
Gabriel Dias do Couto

Two Approaches to Moderate Deviations in
Triangle Count in G(n,m) Graphs

Dissertação de Mestrado

Thesis presented to the Programa de Pós–graduação em
Matemática, do Departamento de Matemática da PUC-Rio in
partial fulfillment of the requirements for the degree of Mestre
em Matemática.

Advisor: Prof. Simon Griffiths

Rio de Janeiro
Abril 2022

DBD
PUC-Rio - Certificação Digital Nº 2012234/CA



Gabriel Dias do Couto

Two Approaches to Moderate Deviations in
Triangle Count in G(n,m) Graphs

Thesis presented to the Programa de Pós–graduação em
Matemática da PUC-Rio in partial fulfillment of the require-
ments for the degree of Mestre em Matemática. Approved by
the Examination Committee:

Prof. Simon Griffiths
Advisor

Departamento de Matemática – PUC-Rio

Doc. José Diego Alvarado Morales
Departamento de Matemática - USP

Profa. Maria Eulalia Vares
Departamento de Matemática - UFRJ

Prof. Robert David Morris
Departamento de Matemática - IMPA

Rio de Janeiro, Abril 19th, 2022

DBD
PUC-Rio - Certificação Digital Nº 2012234/CA



All rights reserved.

Gabriel Dias do Couto

Graduado em Licenciatura em Matemática pela Universidade
de Brasília.

Bibliographic data
Dias do Couto, Gabriel

Two Approaches to Moderate Deviations in Triangle
Count in G(n,m) Graphs / Gabriel Dias do Couto; advisor:
Simon Griffiths. – 2022.

75 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Matemática, 2022.

Inclui bibliografia

1. Combinatória – Teses. 2. Grafos Aleatórios Erdos-Renyi.
3. Desvios Moderados. 4. Martingais. 5. Teoria Espectral
de Grafos. 6. Triângulos. I. Griffiths, Simon. II. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Matemática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 2012234/CA



To everyone that is dear to me,
specially those who are not

mathematicians

DBD
PUC-Rio - Certificação Digital Nº 2012234/CA



Acknowledgments

Eu gostaria de agradecer, primeiramente, os meus pais, Cândida e Ladislau,
por todo o carinho e suporte que sempre me deram e continuam dando. Sempre
ei de valorizar o trabalho desses dois que me são muito queridos. Também aos
meus irmãos Marco Túlio, Rafael e Rodolfo, por sempre serem companheiros.

Aos meus amigos de Goiânia, Arley, Bernardo, Carrijo, Gustavo, João Victor
e Percival, por estarem comigo desde muito cedo e serem tão cordiais.

To PETMAT-UnB, specially Luciana, for showing me what it is to be a
researcher, and much more, and giving me the will to be one.

To the rest of my family that that gave me a very healthy and lovely ambient
while I growed up.

To my friends from the rest of Brazil: from DF, MG, TO, SP, RJ and more.
You all helped me to discover new worlds.

To all professors that I already had. You all influenced me do the choices that
turned me into who I am today.

To the institutions that helped me with my superior studies: UnB and PUC-
Rio. Both were very kind and respectful with me and I hope to repay the
generosity one day.

To Faperj and CAPES for supporting this master studies.

Finally, to my advisors that I dear the most: Daniele Nantes and Simon
Griffiths. Both had a very joyful way of advising me and I’m really glad that
I had the opportunity to study with you.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 2012234/CA



Abstract

Dias do Couto, Gabriel; Griffiths, Simon (Advisor). Two Approaches
to Moderate Deviations in Triangle Count in G(n,m) Graphs.
Rio de Janeiro, 2022. 75p. Dissertação de Mestrado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

The study of deviations, and in particular large deviations, has a long
history in Probability Theory. In recent decades many articles have considered
these questions in the context of subgraphs of the random graphs G(n, p) and
G(n,m). This dissertation considers the lower tail for the number of triangles in
the random graph G(n,m). Two approaches are considered: Martingales, based
on the article of Christina Goldschmidt, Simon Griffiths and Alex Scott; and
Spectral Graph Theory, based on the article of Joe Neeman, Charles Radin and
Lorenzo Sadun. These two approaches manage to find the behavior of the tail
in two different regimes. In this dissertation we give an overview of the article of
Goldschmidt, Griffiths and Scott, discuss in detail the article of artigo Neeman,
Radin and Sadun. In particular, we shall explore the connection between the
lower tail of the number of triangles and the behavior of the most negative
eigenvalues of the adjacency matrix. We shall see that the triangle count tends
to especially depend on the most negative eigenvalue.

Keywords
Erdos-Renyi Random Graphs; Moderate Deviations; Martingales; Spec-

tral Graph Theory; Triangles.
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Resumo

Dias do Couto, Gabriel; Griffiths, Simon. Duas Abordagens em
Desvios Moderados para Contagem de Triângulos em Grafos
G(n,m). Rio de Janeiro, 2022. 75p. Dissertação de Mestrado – Depar-
tamento de Matemática, Pontifícia Universidade Católica do Rio de Ja-
neiro.

O estudo de desvios, e em particular grandes desvios, tem uma história
longa na teoria de probabilidade. Nas últimas décadas muitos artigos conside-
raram essas questões no contexto de subgrafos de grafos aleatórios G(n, p) e
G(n,m). Esta dissertação considera a cauda inferior para o número de triângu-
los no grafo aleatório G(n,m). Duas abordagens estão consideradas: Martin-
gales, a partir artigo de Christina Goldschmidt, Simon Griffiths e Alex Scott; e
Teoria Espectral de Grafos, a partir do artigo de Joe Neeman, Charles Radin e
Lorenzo Sadun. Essas duas abordagens conseguem encontrar o comportamento
da cauda em dois regimes diferentes. Na dissertação discutiremos a visão geral
do artigo de Goldschmidt, Griffiths e Scott, e discutiremos em detalhes o ar-
tigo de Neeman, Radin e Sadun. Em particular, exploraremos a conexão entre
a cauda inferior do número de triângulos e o comportamento dos autovalo-
res mais negativos da matriz de adjacência. Veremos que a contagem tende a
depender, essencialmente, do autovalor mais negativo.

Palavras-chave
Grafos Aleatórios Erdos-Renyi; Desvios Moderados; Martingais; Teoria

Espectral de Grafos; Triângulos.
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Beauty is the first test: there is no permanent
place in this world for ugly mathematics.

G. H. Hardy, A Mathematician’s Apology.
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1
Introduction

Combinatorics is the most beautiful branch of mathematics that I’m
aware of. An outsider of the math world would say that it is the area of
mathematics which considers combinations of things. This crude view contains
a grain of truth.

This area has a lot of different definitions. For me, Combinatorics is
the study of finite objects and their combinations. Not limited to computing
the possible combination of them, this branch also studies if we can find or
construct some structures with these objects. The array of questions that we
can ask in Combinatorics is tremendous. The most intriguing aspect of this
branch for me is its complex simplicity. There is a great number of questions
that can be understood by most people, but some of them are insanely difficult
to answer.

Many of the most intriguing problems in Combinatorics come from Graph
Theory. We consider only finite simple graphs. In other words, for us, a Graph
is a finite set of vertices and a finite set of edges connecting those vertices two-
by-two. You can see two examples below.

• • •

• • •

A Bipartite GraphA beautiful tree
•
•
•
•
•
•

••
••

•• ••

As you can see, there are a lot of simple questions that we can make. For
example, I gave names to the graphs. When can I call a graph by the name
of “tree” or “bipartite”? These questions are already answered: a tree, by
definition, doesn’t contain cycles and a bipartite graph doesn’t contain odd
cycles.

The idea of a bipartite graph is that it can be partitioned into two sets of
vertices A and B where each edges connects vertices from different sets. What
about “tripartite” or “quadripartite” graphs? Is there a equivalent condition
for them as bipartite graphs have? As I said, there are simple questions in
Combinatorics that are very hard to answer. Today, only the bipartition has a
known criteria.

The last two paragraph were to show the relation of Graph Theory with
my definition of Combinatorics. Let’s continue with another simple question:
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Chapter 1. Introduction 11

Given a complete graph, i.e. a graph where all the vertices are connected with
the others, colour the edges with red and blue. What is the smallest number
of vertices , n, such that every colouring of the complete graph with n vertices
contains a monocromatic triangle? The answer is 6!

The proof is very simple: since the graph has 6 vertices, each vertex sends
at last 3 edges with the same colour, say blue. Either the receiving vertices
forms a red triangle or two of them forms a blue triangle with the first vertex.
For 5 vertices we have the following counter example

• •

• •

•

A 2-coloring of a complete graph of five vertices

We, then, can go further: when is a 2-coloured complete graph guarenteed to
contain a monocromatic complete graph on 4 vertices? We know the answer
to be 18. However, if we ask it for 5 vertices, we are already doomed. Or at
least, beyond the knowledge of all the mathematicians of the world. For that
range we only know lower and upper bounds.

Let’s construct a lower bound. If we are looking for a Kk, a complete
graph of k vertices, we can partitionate the graph into k − 1 sets of k − 1
vertices and get something like

Kk−1

Kk−1

Kk−1

Case k=3

which gives us a lower bound of (k − 1)2, since this constructed structure
doesn’t contain a monochromatic Kk. This is far from the truth and the best
constructive lower bound that I’m aware of, which is due to Frankl and Wilson
[7] and is something close to k

√
ln k.

The best lower bound, up to a constant factor, of this problem come
from Erdős [6], from 1947, where he firstly applied a (counting) probabilistic
approach to it. The resulting bound is

√
2k and is yet to be beaten significantly.

In order to prove it, he showed that the probability there exists a colouring
with no monochromatic Kk is bigger than zero, and so there must exist such
a colouring. This proof opens a brand new idea: we don’t need to explicitly
show a structure to answer some questions, we only need to show that such a
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Chapter 1. Introduction 12

structure exists!
After that insight, if we can use probability in order to show that some

graph exists, why couldn’t we define some graphs probabilistically? And so
the random graphs were born. The two most famous random graphs are the
G(n, p) and G(n,m). The first one, G(n, p), is defined by tossing a coin for
each edge with probability p of that edge existing independently of all other
edges. The second random graph, G(n,m), is chosen uniformly in the set of
all graphs of n vertices and m edges. Both graphs are known as Erdős-Rényi
random graphs, but the G(n, p) is due to Gilbert [10] and the second one to
Erdős and Rényi [5].

A very common question to ask for random graphs is when does there
exists a certain structure inside it. Of course one can’t guarantee that a
G(n, p) contains a triangle, since it may happens that the graph has no edges
whatsoever. But, one may show that if we let n tend to infinite, the probability
of G(n, p) having a triangle goes to 1 if p ≫ 1

n
or goes to 0 if p ≪ 1

n
.

The G(n,m) random graph has a much more rigid structure. The set of
possible outcomes of G(n, p) is the set of all graphs of n vertices (given that
p ∈ (0, 1)). Some events in G(n, p) become more or less likely depending on the
number of edges. On the other hand, G(n,m) has only the set of graphs with
m edges and n vertices as possible outcomes. Furthermore, we cannot remove
or add any edges from it because of m being fixed. One may think that setting
m = p

(
n
2

)
would make G(n,m) and G(n, p) be alike. It is true in some sense,

but not entirely true (Bollobás [3] showed that some properties hold for both
random graphs with this setting).

Looking at triangles, for p constant, and m = p
(

n
2

)
we have the same

order for the expected number of triangles in G(n,m) and G(n, p), n3, but the
standard deviation for G(n, p) is of order n2 and for G(n,m) it is of order n3/2.
This points out that the easiest way for G(n, p) to have more triangles than
expected is to have more edges than expected. As this is an “uninteresting”
way to have extra triangles, it is actually more natural to study this problem
in G(n,m)

Now we are finally reaching the scope of this dissertation: moderate
deviations to triangle count in G(n,m). Deviation is a part of probability that
asks what is the probability of some certain not average event to happen.
There are three kinds of deviations: large deviations (order of the mean),
small deviations (order of the standard deviation) and moderate deviations
(something in the middle).

Deviations forG(n, p) have been extensively studied. For large deviations,
it is known that if the positive deviation is too big or too small, then the result
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behaves like a G(n, r), for a corresponding r, in the sense that the edges are
uniformly distributed. But if the deviation is between these two thresholds, then
a certain structure is typically the cause of the deviation. As the complement
graph has distribution G(n, q), q = 1 − p, the same result applies for the lower
tail. On the other hand, the uniform part of this result do not work for G(n,m)
because of its rigid nature. However, the deficits and surplus of deviations are
often caused by some specific structure. Indeed, this concept will be used in
chapter 3. The reader can see [4] for a nice survey about large deviation in
G(n, p).

For small deviations, we can quote Ruciński [19] who stablished that for
all p such that npe(H) and (1 − p)n2 tend to infinity, the number of copies of
H in G(n, p) is asymptotically normally distributed. This result is a “central
limit theorem” for the H subgraph count in G(n, p). Janson [15] proved the
corresponding result in G(n,m).

Focusing on G(n,m), we will quote two papers for moderate deviations:
Goldschmidt, Griffiths, and Scott [11] and Neeman, Sadin, and Radun [18].
These two works are going to be the core of this dissertation. They show
that deviations behave differently depending on how large the deviation is.
Essentially, Goldschmidt, Griffiths, and Scott [11] show that the central limit
theorem behaviour extends to some range of moderate deviations, i.e. for
n−3/2 ≪ t ≪ n−1 and letting τ(G) denote the triangle density of G(n,m)
with m = p

(
n
2

)
and p a constant

P
(∣∣∣τ(G) − E[τ(G)]

∣∣∣ ≥ t
)

= exp
(

− Θ(n3t2)
)
.

This result has some extensions: they gave the value of the constant in the
leading-order term of the exponent; and we should point out as well that their
work shows that you can let p be any sequence in (0, 1) bounded away from 1,
however the range of deviations considered, i.e., the range of t, will depend on
your choice of p.

On the other hand, Neeman, Sadin, and Radun [18] focused exclusively
on the lower tail. That is, they considered the question of how likely it is
that a random graph has many fewer triangles than expected. They found a
regime in which the behaviour is similar to that of large deviations, i.e. for
t ∈ n−3/4 ≪ t ≪ 1 and p a constant

P (τ(G) ≤ E[τ(G)] − t) = exp
(

− Θ(n2t2/3)
)
. (1-1)

They also obtained the constant for the leading-order term in the exponent
when p ∈ [1/2, 1), see Theorem 1.1 However, they did not consider the sparse

DBD
PUC-Rio - Certificação Digital Nº 2012234/CA



Chapter 1. Introduction 14

case, in which p tends to 0, which remains open.
We now state their main result, which we shall prove in detail in this

dissertation.

Theorem 1.1 Let G(n,m) be a random graph, with m = p
(

n
2

)
, and A its

adjacency matrix. Let τ(G) be the triangle density of G(n,m) and let (λi) be
the decreasing sequence of eigenvalues of A. If 1

2 ≤ p < 1 and n−3/4 ≪ t ≪ 1
then

P(τ(G) ≤ p3 − t) = exp
(

−
ln p

1−p

2(2p− 1)t
2/3n2 + o(t2/3n2)

)
,

letting ln 1−p
p

= 2 if p = 1/2. Moreover, conditioning on τ(G) ≤ p3 − t, whp
we have

λ3
n = −tn3(1 − o(1)) and λ3

n−1 ≥ −o(tn3).

Their approach is based on expressing the triangle count in terms of
the eigenvalues of the adjacency matrix of the graph. For this reason, a key
result on the path towards proving Theorem 1.1 is a deviation result for the
eigenvalues and singular values of random matrices, see Theorem 3.17.

We shall also give an overview of the approach of Goldschmidt et al. [11],
which is based on a martingale representation of the triangle count deviation.
We will not prove the strongest version of their theorem, see [11] for details.
We shall prove the following theorem.

Theorem 1.2 Let D△(Gm) be the deviation of the number of triangles in
G(n,m). There is a non-negative constant c = c(H) such that for all m ≤ N

2 ,
and all α, n ≥ c−1, we have

P
(
|D△(Gm)| > αn3/2

)
≤ exp

(
− cαmin{α, n1/2}

)
.

The layout of the dissertation is the following: Chapter 2 gives the basic
definitions and results of Linear Algebra, Spectral Graph Theory and Large
Deviation Principle. All of that will support the reader into understanding
Chapter 3, where we study thoroughly the paper from Neeman et al. [18]. In
particular, in this Chapter we prove a Large Deviation Principal for a constant
number of eigenvalues of G(n,m)’s adjacency matrix.

In Chapter 4 we give basic definitions and results about matingales. In
the same spirit of Chapter 2, Chapter 4 helps the reader into understanding
Chapter 5, where we give an overview of the paper from Goldschmidt et al.
[11].

Finally, in Chapter 6 we give some final remarks about the problems
considered in the dissertation.
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2
Basics for the Spectral Approach

For our first approach, we are going to use Spectral Graph Theory coupled
with the Large Deviation Principle to control the triangle-count with only a
constant number of eigenvalues of the centered adjacency matrix of G(n,m).
We will now start to explain each of those terms. Many of these results are
considered standard in their respective areas, and we shall give references to
their proofs.

2.1
Basics of Spectral Graph Theory

Recalling the basics of Spectral Theory, a vector ϕ is called a eigenvector
of M with eigenvalue λ if Mϕ = λϕ. For our application, we will be interested
in symmetric matrices. In this case all eigenvalues are real and there exists an
orthonormal basis of eigenvectors.

Theorem 2.1 (The Spectral Theorem [9]) Let M be a n-by-n real sym-
metric matrix. There exist real numbers λ1, . . . , λn, not necessarily distinct,
and n mutually orthogonal unit vectors ϕ1, . . . , ϕn such that ϕi is a eigenvector
of M with eigenvalue λi for each i.

A useful tool of combinatorial significance for characterizing eigenvectors
of a symmetric matrix is called the Rayleigh quotient.

Definition 2.2 The Rayleigh quotient of a vector v with respect to a matrix
M is the quotient

vTMv

vTv
.

Note that if ϕ is a eigenvector of M , then its Rayleigh quotient with
respect to M is its eigenvalue λ.

Theorem 2.3 ([9]) Let M be a real symmetric matrix and v a non-zero
vector that maximizes the Rayleigh quotient with respect to M . Then v is an
eigenvector of M with eigenvalue equals to its Rayleigh quotient. Moreover, its
eigenvalue is the largest one.

For completeness we will define what are the singular values of a matrix
and state the Singular Decomposition of any matrix.

Definition 2.4 Given a matrix A, its Singular Values σm are the (non-
negative) square roots of the eigenvalues of ATA.
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PUC-Rio - Certificação Digital Nº 2012234/CA



Chapter 2. Basics for the Spectral Approach 16

Note that the Singular Values are always non-negative.

Theorem 2.5 (Singular Value Decomposition [9]) For any matrix m-
by-n with real entries, we have

A = UΣV T

where

– U is a m-by-m orthogonal matrix whose columns are the eigenvectors ui

of AAT ;

– V is a n-by-n orthogonal matrix whose columns are the eigenvectors vi

of ATA and;

– Σ is a n-by-m matrix with all but the first k = rank(A) diagonal entries
equal to zero. The diagonal entries σi are the Singular Values of A and
work such that T (vi) = σiu.

A few extras about Singular Values:

– If we write A as a linear transformation T : Rn → Rm, then T (vi) =
σi(A)ui for 1 ≤ i ≤ min(m,n), where ui and vi are as in the theorem,
and if i > min(n,m), then T (vi) = 0

– When A is a symmetric matrix, then σi(A) =
√
λi(ATA) =

√
λi(A2) =

|λi(A)| (here not the eigenvalues aren’t necessarily in decreasing order).

Spectral Graph Theory consists of studying graphs via their associated
matrices. This allows us to bring tools of linear algebra into the study of
graphs. The most commonly known matrix that is linked to a graph G is the
Adjacency Matrix, which is symmetric. As usual, let V (G) = [n].

Definition 2.6 The adjacency matrix, A, of G is a n-by-n matrix whose
entries aij are defined as

aij =

 1 if (i, j) ∈ E(G)
0 otherwise.

Obs: For the rest of this session, we will denote the eigenvalues of the
adjacency matrix by λ1, . . . , λn and ϕ1, . . . , ϕn as their respective eigenvectors.

In spite of being the simplest matrix to associate to a graph, this is going
to be the only matrix we are going to need in order to progress. Now let’s try
to get some intuition on how we are going to handle triangles using matrices.

Firstly, how can we count the number of triangles in a graph using only
its adjacency matrix? We have the following result for counting the number of
walks of any length from a vertex to another:
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Theorem 2.7 The number of walks of length ℓ from i to j is the entry ij of
the matrix Aℓ.

Proof. We are going to prove by induction:

– Base case: ℓ = 0 gives A0 = I which works, but (if you are not happy) it
also works for ℓ = 1 by the definition of A.

– Induction Hypothesis: Suppose that the theorem is true for ℓ = L.
– Induction Step: The set of walks of length L+1 from i to j has the same

cardinality as the set of walks of length L from i to a neighbour of j. So,
we can use the induction hypothesis and get

∑
(h,j)∈E(G)

(AL)ih =
n∑

h=1
(AL)ihahj = (AL+1)ij.

■

So if we take i = j and ℓ = 3, we have that the trace of A3, tr(A3), is
six times the number of triangles from G. Now let λ1 ≥ λ2 ≥ · · · ≥ λn be
the eigenvalues of A. We know that they all exist as real numbers because A
is symmetric. Moreover, we know that ∑n

i=1 λ
3
i gives six times the number of

triangles from G. Can we have a little bit of more control over the triangles
looking at fewer eigenvalues? This question is going to be answered in a moment
far from now, but let’s construct some possible intuition on why it might be
true.

Theorem 2.8 (Perron-Frobenius [20]) Let G be a connected graph. Then

– λ1 ≥ −λn;
– The eigenvalue λ1 has a strictly positive eigenvector.

Using this result, one may give a characterization for the bipartite graphs using
only Spectral Graph Theory.

Theorem 2.9 If G is a connected graph, then λ1 = −λn if, and only if, G is
bipartite.

Proof. For the proof, note that for any vector ψ ∈ Rn and u ∈ V (G),

(Aψ)(u) =
∑

(u,v)∈E(G)
ψ(v).

(⇒) Let λ1 = −λn. Without the hypothesis, we have the following
inequality

|λn| =
∣∣∣ϕT

nAϕn

∣∣∣ =
∣∣∣∣∣∑

u,v

A(u, v)ϕn(u)ϕn(v)
∣∣∣∣∣ ≤

∑
u,v

A(u, v)|ϕn(u)||ϕn(v)| ≤ λ1
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Chapter 2. Basics for the Spectral Approach 18

where the last inequality is justified by λ1 being the maximum Rayleigh
quotient.

Since we have equality and A is the adjacency matrix, it means that for
every pair (u, v) that is an edge of G, we have sgn

(
ϕn(u)

)
= −sgn

(
ϕn(v)

)
.

Therefore, we have a bipartition defined by the sign of u in the eigenvector ϕn.
(⇐) Let G be a bipartite graph with G = C ∪B its bipartition. Define

x(u) =

 ϕ1(u), u ∈ C

−ϕ1(u), u ∈ B.

Then for u ∈ C

(Ax)(u) =
∑

(u,v)∈E(G)
x(v) = −

∑
(u,v)∈E(G)

ϕ1(v) = −λ1ϕ1(u) = −λ1x(u),

and for u ∈ D

(Ax)(u) =
∑

(u,v)∈E(G)
x(v) =

∑
(u,v)∈E(G)

ϕ1(v) = λ1ϕ1(u) = −λ1x(u).

Therefore, x is an eigenvector of eigenvalue −λ1 which is greater than
λn, as λn is the smallest eigenvalue, and since −λ1 ≤ λn, by Perron-Frobenius,
we have the equality as λn is the smallest eigenvalue of A.

■

Remember that a bipartite graph is a graph without odd cycles and
triangles are odd cycles. So we could conjecture that the smallest eigenvalue, or
a constant amount of the smallest eigenvalues, is/are responsible for destroying
or keeping the triangles existence.

While I would like to continue this discussion of Spectral Graph Theory,
this small presentation is enough for what follows. If the reader is interested to
learn more about Spectral Graph Theory, including other quantitative results
about qualitative properties of graphs, see [2, 20].

2.2
Basics of the Large-Deviation Principle

Large deviation theory is an intriguing branch of Probability Theory
with a long history and many applications. However, it is also quite technical
and overloaded with notations. Because of that, we are going to introduce its
results as we develop our approach. But, at least, let’s state what it is and
consider one application.

DBD
PUC-Rio - Certificação Digital Nº 2012234/CA



Chapter 2. Basics for the Spectral Approach 19

Definition 2.10 Let ξ1, ξ2, . . . be a sequence of random variables in some
probability space P with Borel σ-field B. We say that the sequence (ξn) satisfies
the large-deviation principle (LDP) with rate function I : P → [0,∞],
if for any B ∈ B we have

− inf
x∈B◦

I(x) ≤ lim inf
n→∞

n−1 lnP(ξn ∈ B)

≤ lim sup
n→∞

n−1 lnP(ξn ∈ B) ≤ − inf
x∈B

I(x)
(2-1)

Roughly speaking, the LDP gives the exact logarithmic rate for which
the probability of a certain deviation goes to zero. As a first example, let
us consider the binomial distribution, which may be expresses as a sum of
Bernoulli trials.

Let (Xi) be a sequence of i.i.d. Bernoulli random variables with proba-
bility p ∈ (0, 1) and denote Sn = X1 + · · · +Xn. Let x ∈ (0, 1) and we want to
compute

P
(
Sn = ⌊xn⌋

)
=
(

n

⌊xn⌋

)
p⌊xn⌋(1 − p)n−⌊xn⌋.

For simplicity, let l = ⌊xn⌋. Using Stirling’s approximation formula, we get

P
(
Sn = l

)
= n!
l!(n− l)!p

l(1 − p)n−l

=
√

n

2πl(n− l)n
nl−l(n− l)−n+lpl(1 − p)n−l

=
√

n

2πl(n− l)e
n ln n−l ln l−(n−l) ln(n−l)+l ln p+(n−l) ln(1−p)

=
√

n

2πl(n− l)e
n[ l

n
ln p+(1− l

n
) ln(1−p)− l

n
ln l

n
−(1− l

n
) ln(1− l

n
)]

= 1√
2πnx(1 − x)

e−nI(x)+O(ln n) = e−nI(x)+O(ln n)

(2-2)

where I(x) = x ln x
p

+ (1 − x) ln 1−x
1−p

if x ∈ [0, 1], and ∞ otherwise.
With some calculations, one can check that I(x) is convex, I(p) = I ′(p) =

0 and I ′′(p) = (p(1−p))−1. Therefore I(x) takes its minimum only at the point
p, this means that the most probable result of Sn is ⌊pn⌋, which is consistent
with n−1Sn → p. Also, by 2-2,

limn−1 lnP(Sn = l) = −I(x)

and, therefore, the sequence (i−1Si) satisfies the LDP with I(x) as its rate
function, i.e., if x ̸= p, then −I(x) gives the exact exponential rate of
convergence to zero of the probability of the event {Sn = ⌊xn⌋}.
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We won’t actually use the Bernoulli random variable X, but we will use
its centralized form X − E[X]. However, the calculations are very similar and
we get that its rate function is

I(x) = (p+ x) ln p+ x

p
+ (1 − p− x) ln 1 − p− x

1 − p

if x ∈ [−p, 1 − p], and ∞ otherwise
Now, we will define some objects that we are going to use a lot throughout

this approach of the problem. We begin with a well known definition.

Definition 2.11 Let X be a convex subset of a real vector space. A function
f : X → R is called convex if for all t ∈ [0, 1] and x1, x2 ∈ X

f(tx1 − (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2).

Now for a not so famous concept.

Definition 2.12 Let ξ be a random variable. Then its cumulant-
generating function is defined as

Λξ(s) := lnE[esξ]

whenever it exists. If lnE[esξ] doesn’t exist, put Λξ(s) = ∞

I find this definition very similar, in conception, to the standard deviation
where we take the square root of the expectation of something squared. This
function has some properties that we will use soon.

Theorem 2.13 Suppose that Λξ exists. Then Λξ has the following properties:

– is infinitely differentiable;

– Λξ(0) = 0;

– is convex;

– and Λ′
ξ(0) = E[ξ]

Proof. Note that Λξ(s) = lnMξ(s) where Mξ(s) is the moment generating
function. Since both of the functions ln x and Mξ(s) exist and are infinitely
differentiable, it follows, by standard results of calculus, that Λξ(s) is infinitely
differentiable.

The second claim is trivial since Mξ(0) = 1.
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For the third claim, let a+ b = 1 and u, v ∈ Dom(Λξ). Then

Λξ(av + bu) = lnE[eav+bu]

= lnE[eavebu]

≤ ln(E[evξ]aE[euξ]b)

= a lnE[evξ] + b lnE[euξ]

= aΛξ(v) + bΛξ(u).

where, for the inequality, we used Holder’s Inequality with functions f = evξ

and g = euξ.
Finally, Λ′

ξ(0) = M ′
ξ(0)

Mξ(0) = E[ξ]. ■

Note that a random variable X with normal distribution N(µ, σ2) has
ΛX(s) = ln

(
exp(µs+ σ2s2

2 )
)

= µs+ σ2s2

2 . This lead us to the following definition
(thinking of µ = 0).

Definition 2.14 A random variable ξ is called subgaussian if there exists a
constant C such that Λξ(s) ≤ Cs2 for all s.

We are defining this object because our random variables are going to
be subgaussian. Let X be a Bernoulli random variable. Then E[X] = p and
0 ≤ X ≤ 1. Hoeffding’s Lemma gives us E[eαX ] ≤ exp(αp+ α2

8 ), which implies
that ΛX(s) ≤ sp + s2

8 . Yet, let ξ = X − E[X] and the same argument gives
Λξ(s) ≤ s2

8 and, therefore, ξ is a subgaussian random variable.
Our last definition is the Legendre Transformation.

Definition 2.15 Let I ⊂ R be an interval and f a convex function. Then the
Legendre transformation f ∗ : I∗ → R of f is defined as

f ∗(x∗) = sup
x∈I

(x∗x− f(x))

for x∗ ∈ I∗ = {x∗ ∈ R : sup
x∈I

(x∗x− f(x) < ∞}.

To simplify our notation, we will write f ∗(x) = sup
u

(ux− f(u)).
To give some intuition about the Legendre transformation, suppose that

f is differentiable. Then ux−f(u) is differentiable and maximizes at x = f ′(u),
since f is convex. Also suppose that f ′ is invertible, then u = (f ′)−1(x) which
gives us that f ∗(x) = (f ′)−1(x)x − f((f ′)−1(x)). This function is minus the
value of the intersection between the y-axis and the line tangent to f with
inclination equals to x. So, if f is strictly convex, then we can reconstruct it
from its Legendre transformation.

Some properties are as follows and won’t be proved here but will be used
sometimes.
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Theorem 2.16 Let f and g be two convex functions. Then:

1. f ∗ is convex;

2. f ∗∗ = f ;

3. If f ≤ g, then g∗ ≤ f ∗;

4. If f(x) = cx2, then f ∗(x) = x2

4c
.

With these properties, we can prove the following result which will be
important later.

Lemma 2.17 If ξ is a subgaussian random variable, then

4 sup
s∈R

Λξ(s)
s2 =

(
inf
s∈R

Λ∗
ξ(s)
s2

)−1

< ∞.

Proof. The first expression is finite since ξ is subgaussian. And so, we just need
to prove that the two expressions are equal.

Let L := sup
s∈R

Λξ(s)
s2 and ℓ := inf

s∈R

Λ∗
ξ(s)
s2 , and define ML(s) = Ls2. Then

Λξ(s)
s2 ≤ ML(s)

s2 implies Λξ(s) ≤ ML(s) for all s. We now apply the Legendre
transformation on both sides, which will switch the inequality by property 3,
and get Λ∗

ξ(s) ≥ M∗
L(s) = s2

4L
, where we used property 4 for the calculation.

Dividing both sides by s2

Λ∗
ξ(s)
s2 ≥ L−1

4 ⇒ 4 sup
s∈R

Λξ(s)
s2 ≥

(
inf
s∈R

Λ∗
ξ(s)
s2

)−1

because it holds for all s. Now we need to get the inequality from the other
side. We only repeat the argument.

By the definition of ℓ, we have Λ∗
ξ(s) ≥ ℓs2 for all s. Therefore, applying

the Legendre transformation on both sides, using properties 1, 2, 3 and 4, we
get

Λ∗∗
ξ (s) = Λξ(s) ≤ s2

4ℓ.

Dividing both sides by s2 gives

Λξ(s)
s2 ≤ ℓ−1

4 ⇒ 4 sup
s∈R

Λξ(s)
s2 ≤

(
inf
s∈R

Λ∗
ξ(s)
s2

)−1

which completes the proof. ■

All of those definitions and results together lead us to Cramér’s Theorem.
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Theorem 2.18 (Cramér [16]) Let (ξi) be a sequence of i.i.d. random vari-
ables with E[ξi] = m < ∞. Then, for any x ≥ m we have

n−1 lnP(n−1
n∑

i=1
ξi ≥ x) → −Λ∗

ξ(x).

With this machinery, I think that we are ready to start our new approach.

2.2.1
Two Extras

The following two definitions are here since we are going to use them,
but they won’t be motivated. The motivation, in this case, is going to be the
results from the next chapter.

The goodness of the rate function is a topological property.

Definition 2.19 A good rate function is a rate function such that for every
r ∈ (0,∞), we have I−1([0, r]) is compact.

The speed of the LDP comes from changing the normalization by n by
anything that goes to infinity.

Definition 2.20 Let ξ1, ξ2, . . . be a sequence of random variables in some
probability space P with Borel σ-field B. We say that the sequence (ξn) satisfies
the LDP with rate function I : P → [0,∞] and speed mn → ∞, if for any
B ∈ B we have

− inf
x∈B◦

I(x) ≤ lim inf
n→∞

m−1
n lnP(ξn ∈ B)

≤ lim sup
n→∞

m−1
n lnP(ξn ∈ B) ≤ − inf

x∈B
I(x)
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3
The Spectral Approach

For this chapter, we denote the eigenvalues of our matrix as λ1, . . . , λn

and the singular values by σ1, . . . , σn in decreasing order, unless otherwise
stated. The vector vi will denote the eigenvector of λi, unless otherwise stated.

Let’s give an overview of the following result and observe that this one
is only for the lower tail. Also, we are limited to p ∈ [1/2, 1).

Theorem 3.1 Let G(n,m) be a random graph and A its adjacency matrix. Let
τ(G) be the random variable corresponding to the triangle density of G(n,m).
If 1

2 ≤ p < 1 and n−3/4 ≪ t ≪ 1 then

P(τ(G) ≤ p3 − t) = exp
(

−
ln p

1−p

2(2p− 1)t
2/3n2 + o(t2/3n2)

)
,

letting ln 1−p
p

= 2 if p = 1/2. Moreover, conditioning on τ(G) ≤ p3 − t, with
high probability we have

λ3
n = −tn3(1 − o(1)) and λ3

n−1 ≥ −o(tn3).

Firstly, we are going to show that analysing the centralized adjacency
matrix, Ã = A− E[A], of G(n,m) is sufficient, instead of using the adjacency
matrix.

Then, we will show that the largest eigenvalues and singular values of
Ã obey an LDP with some parameters. In other words, we determine the
large deviation behavior of the vectors (σ1, σ2, . . . , σk) and (λ1, λ2, . . . , λk) for
both Ã and −Ã. Note that we include −Ã, as the largest eigenvalues of −Ã
correspond to the smallest eigenvalues of the original matrix, which are crucial
for understanding the triangle count.

Finally, armed with the LDP property and auxiliary results, we show the
upper and lower bounds on the probability of the triangle count deviation. In
fact, it will turn out that, the triangle count depends especially on the most
negative eigenvalue

3.1
The Centralized Adjacency Matrix Suffices

We will settle the first part, showing that the centralized matrix suffices.
Let An be the adjacency matrix of G(n,m). If we put p = m/

(
n
2

)
, then the

centralized matrix Ãn = An − E[An] = An − p1 + pI, where 1 is the n-by-n
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matrix with all entries equals to 1. Also, we denote by tr[A] as the trace of the
matrix A.

Lemma 3.2 Let G be a graph with n vertices and di the degree of vertex i or
each i ∈ [n]. Then for any p ∈ [0, 1], if A is the adjacency matrix of G, then
we have

tr[Ã3
n] = tr[A3

n] − p3n3 + p3n+ 6mp(np− 2p+ 1) + 3p3n(n− 1) − 3p
∑

i

d2
i .

Moreover, if p = m/
(

n
2

)
, then

tr[Ã3
n] ≤ tr[A3

n] − p3n3 + p3n+ 6mp

Proof. The first claim is achieved by brute force and using some identities:

tr[(An − p1 + pI)3] =

= tr[A3
n − 3pA2

n1 + 3p2An12 − p313 + 3p312 − 3p31 + p3I + 3p2An + 3pA2
n − 6p2An1]

= tr[A3
n] − 3p

∑
i

d2
i + 6nmp2 − p3n3 + 3p3n2 − 3p3n+ p3n+ 3p2tr[An] + 6mp− 12mp2

= tr[A3
n] − p3n3 + p3n+ 6mp(n− 2p+ 1) + 3p3n(n− 1) − 3p

∑
i

d2
i .

where we used that tr[An1] = tr[A2
n] = 2m, since An(G) is the adjacency

matrix of G. The sum term came from

tr[A2
n1] =

∑
(i,j)∈[n]2

(A2
n)ij =

∑
(i,j,k)∈[n]3

(An)ik(An)kj =
n∑

k=1
d2

k.

For the inequality, we apply Cauchy-Schwarz inequality to the sum and
get

n∑
k=1

d2
k ≥ 1

n

(
n∑

k=1
dk

)2

= (2m)2

n
= 2mp(n− 1).

Together with that, note that

3p3n(n− 1) = 3p3 2n(n− 1)
2 = 6p3

(
n

2

)
= 6p2m

and we have our result. ■

With these expressions we can now bound the deviation on triangle count
of the adjacency matrix using only the centralized adjacency matrix.
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Corollary 3.3 For any t ≥ 0,

P
(
tr[A3

n] ≤ E
[
tr[A3

n]
]

− t
)

≤ P
(
tr[Ãn

3] ≤ O(n2) − t
)
.

The above corollary follows immediately using that E[tr[A3
n]] = n3p3 +O(n2),

since it is six times the expectation of the number of triangles in G(n,m).
For a lower bound we are going to do completely different tricks only

explained in the end.
In order to proceed to the LDP part, we need to translate things to

“Frobenius language” first. Remember, we are trying to prove the LDP for
the vectors (σ1, σ2, . . . , σk) and (λ1, λ2, . . . , λk) which will be normalized by a
sequence mn, where

√
n ≪ mn ≪ n. More specifically,

Theorem 3.4 (The general subgaussian LDP) Let An be a n-by-n sym-
metric random matrix having i.i.d. upper diagonal entries being equal in dis-
tribution to ξ, a subgaussian random variable, and zero diagonal entries. For
every integer k ≥ 1 and sequence mn such that

√
n ≪ mn ≪ n, we have that

the sequence of vectors

X = (σ1, σ2, . . . , σk)/mn

satisfies the LDP with speed m2
n and good rate function I : Rk

+ → [0,∞) with

I(x) = |x|2

2 inf
s∈R

Λ∗
ξ(s)
s2 .

If, in addition, the s that achieves the above infimum is finite and non-negative,
then the sequence

Y = (λ1, λ2, . . . , λk)/mn

has the same LDP properties.

As a motivation for the proofs to come, we will now present the start of
the proof of Theorem 3.4 and see the results we will need to produce.

Remember that, in order to prove a LDP, we need to prove a lower
bound for open sets and a upper bound for closed sets. Let’s start with the
upper bound.

Let E ⊂ Rk be a closed set. Since the singular values are always positive
real numbers, we can restrict our attention to Rk

+. Let t = inf
z∈E

||z|| using the
Euclidean norm. Then, the event X ∈ E is inside the event ||X|| > t and
therefore

lnP
(
X ∈ E

)
≤ lnP

(
||X|| > t

)
= lnP

(
k∑

i=1
σ2

i > m2
nt

2
)
. (3-1)
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Okay, so we are already stuck on the upper bound of the LDP and need
to know how to bound the probability of the event ∑k

i=1 σ
2
i > m2

nt
2 for any k,

t and
√
n ≪ mn ≪ n. Let’s check the lower bound.

Let E ⊂ Rk be a open set and, again, we focus on the positive quadrant.
Since E is open, every point of it is an interior point so we have some room
for X to be close to w ∈ E and still be in E. Instead of the typical “we have a
ball around w” argument, we will ask for a stronger property that we will be
able to bound. Since w ∈ E there exists a ε > 0 such that for all z ∈ Rk

+ if
||z||2 ≤ ||w||2 + ε and ⟨z, w⟩ ≥ ||w||2, then z ∈ E. Therefore,

lnP
(
X ∈ E

)
≥ lnP

(
||X||2 ≤ ||w||2 + ε and ⟨X,w⟩ ≥ ||w||2

)
.

We are able to bound both parts of the event separately. The first one is the
complement of the same inequality from the closed side, so we can bound its
complement by

lnP
(
||X||2 > ||w||2 + ε

)
= lnP

(
k∑

i=1
σ2

i > m2
n(||w||2 + ε)

)
.

The second one will need a different approach as we will need to bound both
sides in terms of w

lnP
(
⟨X,w⟩ ≥ ||w||2

)
= lnP

(
k∑

i=1
σiwi ≥ m2

n

k∑
i=1

w2
i

)
.

Now that we can see what need to be done, let’s build up our machinery.

3.2
Simplifying Our Study of Singular Values and Eigenvalues

Let A and B be two matrices of size n-by-m, for any n,m ∈ N, and with
real entries.

Definition 3.5 The Frobenius Inner Product of A and B is defined as

⟨A,B⟩F =
∑

(i,j)∈[n]×[m]
aijbij = tr(ATB).

The Frobenius Norm of A is, then, defined as

||A||F =
√∑

j

∑
i

|aij|2.

Some properties are as follows:

Theorem 3.6 Let A and B be n-by-m real matrices.
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1. ||A||F =
√

min{n,m}∑
i=1

σ2
i (A);

2. ⟨A,B⟩F ≤ ∑k
i=1 σi(A)σi(B);

3. If A and B are positive semidefinite, then ⟨A,B⟩F ≥ 0;

4. If U is a unitary matrix, then ||UA||F = ||AU ||F = ||A||F .

As we are dealing with matrices with real entries, this inner product is
similar to the dot product on Rnm as just being the sum of the product of each
entry.

Now let’s let Mk be the set of n-by-n matrices of Frobenius norm at most
1 and rank at most k. And let M+

k be the set of n-by-n matrices of Frobenius
norm at most 1, rank at most k, symmetric and positive semidefinite. We are
going to translate the sum of the squares of eigenvalues and singular values as
being the supremum over the inner product with the matrices of these sets.

Lemma 3.7 Let A be a n-by-n symmetric matrix. Then,
√√√√ k∑

i=1
max{λi(A), 0}2 = sup

M∈M+
k

⟨A,M⟩F .

Moreover, let A be any n-by-n matrix. Then,
√√√√ k∑

i=1
σ2

i (A) = sup
M∈Mk

⟨A,M⟩F .

Proof. The proof is very straight forward getting a double inequality. Since A
is symmetric, let A = QT ΛQ be its eigendecomposition. Put Λ in decreasing
order of the eigenvalues and define Λk to be equals to max{λi(A), 0} only on
the k first diagonal entries and 0 on the rest. Then choosing M to be

M = QT ΛkQ

||Λk||F

we have

⟨A,M⟩F = tr(ATM)

= tr(QT ΛQQT ΛkQ)||Λk||−1
F

= tr(ΛQQT ΛkQQ
T )||Λk||−1

F

= tr(ΛΛk)||Λk||−1
F

= ||Λk||F =

√√√√ k∑
i=1

max{λi(A), 0}2,
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where we used the cyclic invariance of the trace. Therefore,√∑k
i=1 max{λi(A), 0}2 ≤ sup

M∈M+
k

⟨A,M⟩F .

For the other side of the inequality, we will just use A = A+ −A−, where
A+ and A− are positive semidefinite matrices (the matrices with positive and
negative eigenvalues of A). Let M ∈ M+

k be any matrix. Then, using the
properties from the Frobenius inner product

⟨A,M⟩F = ⟨A+,M⟩F − ⟨A−,M⟩F

≤ ⟨A+,M⟩F

≤
n∑

i=1
σi(A+)σi(M)

=
k∑

i=1
max{λi(A), 0}σi(M)

= ⟨Ak,max, σ⟩

≤ ||Ak,max||.||σ||

≤ ||Ak,max|| =

√√√√ k∑
i=1

max{λi(A), 0}2.

where Ak,max is the vector (max{λ1(A), 0}, . . . ,max{λk(A), 0}) and σ =
(σ1(M), . . . , σk(M)), both from Rk. Also, for the forth line, we used that
M has rank at most k, so only the first k singular values have the pos-
sibility of being bigger than zero; and used the fact that A is symmet-
ric to get σi(A) = |λi(A)|. As M is an arbitrary matrix, we get that√∑k

i=1 max{λi(A), 0}2 ≥ sup
M∈M+

k

⟨A,M⟩F . and the result holds.

For the “Moreover” statement, about the singular values, we proceed
using the same approach, but we use instead the singular decomposition and
get the same results, proving the lemma. ■

With this result from Lemma 3.7, it is enough to look at the sup
M∈Mk

⟨A,M⟩

to solve Theorem 3.4, but we will need to, in order to use a union bound, turn
this supremum into a maximum. More explicitly, we will need to find a ε-net
in Mk.

3.3
Finding Our Net

Let’s first define what a ε-net is.
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Definition 3.8 Let (X, d) be a metric space. A subset N ⊂ X is called a ε-
net if for every x ∈ X there is a n ∈ N such that d(x, n) ≤ ε, i.e. N is ε-close
to any point of X.

The first thing that we need, then, is to find a suitable ε-net. As we will later
use a union bound argument, we would like to find an ε-net which is not too
large.

Observe that if we take any space S of matrices, say n-by-m matrices,
with the Frobenius norm at most 1, then S is isometric to the Euclidean
unit ball of Rnm with the Euclidean norm. Therefore we can use the following
famous result for ε-nets of the Euclidean ball.

Lemma 3.9 ([21]) Let B ⊂ Rd be the unit ball and let || · || be a norm. Then
it has a ε-net N with respect to the norm || · || with

|N | ≤
(3
ε

)d

.

As a corollary, we get

Corollary 3.10 There is a universal constant C such that for all ε ∈ (0, 1),
there exists a ε-net for Mk of size |N | ≤ (C/ε)2kn.

The idea of the proof is simple. We can use Lemma 3.9 to find a ε-net for
the unit ball, but it won’t give immediately the net we want because we have
the nuance of needing its elements to have rank at most k when translated to
matrices. The solution is to make a ε/3-net for each element of the Singular
Value Decomposition M = UΣV T so that together they define the net we
want. It will be possible to define the net for Σ in such a way that it has to
have rank at most k, which resolves the problem we mentioned (using that
rank(AB) ≤ min{rank(A), rank(B)}).
Proof. We will use Lemma 3.9 two times.

First, let D be the set of diagonal matrices with non-negative entries,
Frobenius norm at most 1 and rank at most k. Then Lemma 3.9 grants us a
ε
3 -net of size

|D| ≤
(
n

k

)(
3
ε/3

)k

=
(
n

k

)(9
ε

)k

since only at most k entries are non-zero and we take a net for each combination
of k entries from the diagonal.

Now, let O be the set of orthogonal n-by-k matrices. Then O is a subset
of the unit ball of Rnk. For this part we change the norms. We will use the 1, 2
norm, i.e.

||S||1,2 = max
i

||Si||
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where Si is the column i of S. As Lemma 3.9 works for any norm, we can
define the ε

3 -net O1,2 of O such that

|O1,2| ≤
(9
ε

)nk

.

Finally, we define our net as N = {ŪΣ̄V̄ T : Ū , V̄ ∈ O1,2; Σ̄ ∈ D}.
Therefore,

|N | ≤ |O1,2|2|D| ≤
(
n

k

)(9
ε

)k (9
ε

)2nk

≈
(
C

ε

)2kn

.

It only remains to prove that N is, indeed, a ε-net. Let M ∈ Mk and
its singular decomposition be M = UΣV T . Then there exist an M̄ = ŪΣ̄V̄ T ,
with Ū , V̄ ∈ O1,2 and Σ̄ ∈ D, such that ||U − Ū ||1,2 ≤ ε/3, ||V − V̄ ||1,2 ≤ ε/3
and ||Σ − Σ̄||F ≤ ε/3. Using the triangle inequality over the Frobenius norm

||M − M̄ ||F = ||UΣV T − ŪΣ̄V̄ T ||F
≤ ||(U − Ū)ΣV T ||F + ||Ū(Σ − Σ̄)V T ||F + ||ŪΣ̄(V T − V̄ T )||F

We need to bound each of the three parts. As U and V are analogous,
we will only prove for one of them. For Σ, we just need to note that
||U(Σ − Σ)V T ||F = ||Σ − Σ||F ≤ ε/3, since U and V are unitary. Now, since
V is a unitary matrix, we get that

||(U − U)ΣV T ||F = ||(U − U)Σ||F

=

√√√√ k∑
i=1

Σ2
i,i||(ui − ui)||2

≤
√

||Σ||F ||(U − U)||21,2

≤
√

1.ε
2

9 = ε

3 .

and since 3ε
3 = ε, the proof is complete. ■

Okay, now that we know that an ε-net exists, it makes sense to start to
transform our inequalities. The first one that we are going to handle is Mk.

Lemma 3.11 Take an ε-net N ⊂ Mk with ε < 1/2. Then for any n-by-n
symmetric matrix A,

sup
M∈Mk

⟨M,A⟩ ≤ 1
1 − 2ε max

N∈N
⟨N,A⟩.

The idea of this proof is very similar to Taylor Series. We are going to
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approximate a arbitrary matrix M ∈ Mk by the sum of decreasing elements
of the net plus some matrices that goes to zero on Frobenius norm on each
step of the approximation.
Proof. For a fixed M ∈ Mk we can find an N ∈ N such that ||M −N ||F ≤ ε.
Note that M −N has rank at most 2k since M and N both have rank at most
k.

In order to use the identity ||A||F =
√∑rank(A)

i=1 σ2
i (A), let UΣV T be the

singular decomposition of M − N and let T : Rn → Rn be its corresponding
linear transformation such that T (vi) = σi(M − N)ui. Decompose T as the
sum T1 + T2 with

Tj(vi) =

 σi(M −N)ui, 1 + (j − 1)k ≤ i ≤ k + (j − 1)k
0 otherwise.

Then, we can write M −N = M1 +M2 with Mj being the corresponding
matrix of Tj. Moreover, Mj ∈ Mk since each one has rank at most k and

||Mj||F =

√√√√√rank(Mj)∑
i=1

σ2
i (Mj) ≤

√√√√√rank(M−N)∑
i=1

σ2
i (M −N) = ||M −N ||F ≤ ε < 1.

With this result, we can rewrite M as the sum of a element of the net and two
small multiples of elements from Mk

M = N + εM ′
1 + εM ′

2

where we normalized the Mj’s by ε, for calculation purposes, maintaining the
Frobenius norm at most 1. We can repeat this approximation again for each
Mj and find Mj = Nj + εMj1 + εMj2 so that on step k we have

M =
k−1∑
i=0

∑
s∈Si

ε|s|Ns + εk
∑

s∈Sk

Ms

where Si is the set of strings of 1’s and 2’s of length i. Note that the right sum
goes to zero on Frobenius norm since ||Ms||F ≤ 1 for all s ∈ Sk, |Sk| = 2k and
ε < 1/2. Therefore, the first sum converges to M and

M =
∞∑

i=0

∑
s∈Si

ε|s|Ns.

Now that we are able to approximate any M ∈ Mk by a series of elements
of the net (times some decreasing constants), let’s do the inner product with
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A and get

⟨M,A⟩ =
∞∑

i=0

∑
s∈Si

ε|s|⟨Ns, A⟩ ≤ max
n∈N

⟨N,A⟩
∞∑

i=0

∑
s∈Si

ε|s| = max
n∈N

⟨N,A⟩
∞∑

i=0
2iεi

= 1
1 − 2ε max

n∈N
⟨N,A⟩

which follows for any M and we have

sup
M∈Mk

⟨M,A⟩ ≤ 1
1 − 2ε max

N∈N
⟨N,A⟩.

■

Now we can use a union bound and get the following proposition, which
will help us with the closed side.

Proposition 3.12 Let A be a n-by-n symmetric random matrix having i.i.d.
upper diagonal entries. Then for any k ≥ 1, 0 < ε < 1/2, and t > 0

lnP


√√√√ k∑

i=1
σ2

i (A) > t

 ≤ sup
M∈Mk

lnP
(
⟨M,A⟩ > (1 − 2ε)t

)
+O

(
nk ln 1

ε

)

Proof. Let N ⊂ Mk be an ε-net of size at most (C/ε)2kn. It exists by Corollary
3.10. By Lemma 3.7 and, after, Lemma 3.11

P


√√√√ k∑

i=1
σ2

i (A) > t

 = P
(

sup
M∈Mk

⟨A,M⟩F > t
)

≤ P
(

max
N∈N

⟨A,N⟩F > (1 − 2ε)t
)
.

Using a union bound over N ,

P
(

max
N∈N

⟨A,N⟩F > (1 − 2ε)t
)

≤
∑

N∈N
P
(
⟨N,A⟩ > (1 − 2ε)t

)
≤ (C/ε)2kn sup

M∈Mk

P
(
⟨M,A⟩ > (1 − 2ε)t

)
.

And after applying the ln to both sides, we get the result. Note that we went
back to Mk in the end (a trivial inclusion), but used the net to switch the
places of P and sup. ■

We have just transformed our problem into another! On the next section
we are going to find a good upper bound for supM∈Mk

P
(
⟨M,A⟩ > (1 − 2ε)t

)
using a technique similar to the one used on Hoeffding-Azuma inequality and
everything else needed for the LDP.
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3.4
All the Tools for the LDP

Let’s start with what we promised: the Hoeffding-Azuma argument.

Proposition 3.13 Let A be a n-by-n symmetric random matrix, with zero
diagonal, having i.i.d. upper diagonal entries with the same distribution as ξ,
a subgaussian random variable which has a globally finite moment-generating
function and a cumulant-generating function Λξ(s) = lnE[esξ]. Define L :=
sup
s>0

Λξ(s)
s2 and ℓ := inf

s>0

Λ∗
ξ(s)
s2 . Then

sup
M :||M ||F ≤1

P
(
⟨M,A⟩ > t

)
≤ exp

(
− t2

8L

)
= exp

(
−t2ℓ

2

)

Proof. It suffices to look at only symmetric matrices M , since ⟨M,A⟩ =
⟨M+MT

2 , A⟩ and ||M+MT

2 ||F ≤ ||M ||F . So, if we let m =
(

n
2

)
and enumerate

the upper diagonal entries of A as ξi and of M as ai, we can see that, since
both of them are symmetric, ⟨M,A⟩ = 2

m∑
i=1

ξiai. Therefore, for s > 0

P
(
⟨M,A⟩ > t

)
= P

(
m∑

i=1
ξiai > t/2

)

= P
(

exp
(
s

m∑
i=1

ξiai

)
> exp

(
st/2

))

≤ e−st/2E
[
exp

(
s

m∑
i=1

ξiai

)]

= exp
(

m∑
i=1

Λξ(sai) − st/2
)

where we used Markov’s inequality for the inequality.
We now use the “multiply by one” trick to bound

m∑
i=1

Λξ(sai)

m∑
i=1

Λξ(sai) =
m∑

i=1
Λξ(sai)

(sai)2

(sai)2 ≤ s2
m∑

i=1
a2

iL ≤ s2L

2

where the last inequality came from ||M ||F ≤ 1, and now choose an optimal
s = t

2L
to get

P
(
⟨M,A⟩ > t

)
≤ exp

(
t2

8L − t2

4L

)
= exp

(
− t2

8L

)
= exp

(
−t2ℓ

2

)

where the last equality comes from Lemma 2.17. ■

With propositions 3.12 and 3.13 we are able to build the result that we
need for the upper bound part of the LDP.
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Corollary 3.14 With the same setting as Proposition 3.13, for any k and
t > 0, if nk

t2ℓ
< 1

2 , then we have

lnP


√√√√ k∑

i=1
σ2

i (A) > t

 ≤ −t2ℓ

2 +O

(
nk ln t

2ℓ

nk

)
.

Proof. Proposition 3.12 gives us that

lnP


√√√√ k∑

i=1
σ2

i (A) > t

 ≤ sup
M∈Mk

lnP
(
⟨M,A⟩ > (1 − 2ε)t

)
+O

(
nk ln 1

ε

)
.

We choose ε = nk
t2ℓ
< 1

2 and apply Proposition 3.13 to get

lnP


√√√√ k∑

i=1
σ2

i (A) > t

 ≤ −(t− 2εt)2ℓ

2 +O
(
nk ln 1

ε

)

= −t2ℓ

2 + 2nk
(

1 − 1
t

)
+O

(
nk ln t

2ℓ

nk

)

= −t2ℓ

2 +O

(
nk ln t

2ℓ

nk

)

■

Now we handle the lower bound part of the LDP. As we saw, we need to
control the probability of the event ⟨X,w⟩ ≥ ||w||2, for w being some positive
vector. To handle that we are going to control the event ⟨X,w⟩ ≥ ||w||

√
t (as

if we switched one ||w|| for
√
t). This transformation helps us as changing the

norm of w, in this new setting, does not change the inequality. This can be
seen using the equality ⟨X,w⟩ = ||X||.||w||cosθ, where θ is the angle between
X and w. This property is called homogeinity in w.

Using that idea, let’s continue.

Proposition 3.15 With the same setting as Proposition 3.13, suppose that
the function s 7→ Λ∗

ξ(s)
s2 minimizes at some finite s. Then, for any 1 ≪ t ≪ n2

and any w1, w2, . . . , wk > 0, we have that

lnP
(

k∑
i=1

wiσi(A) > ||w||
√
t

)
≥ −tℓ

2 − o(t).

If the s that minimizes Λ∗
ξ(s)
s2 is non-negative, then it works for the

eigenvalues as well:

lnP
(

k∑
i=1

wiλi(A) > ||w||
√
t

)
≥ −tℓ

2 − o(t).
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For this proof, let any sequence (ai)k
1 be represented by a vector a = (a1, . . . , ak)

Proof. Let s∗ be the real number that minimizes Λ∗
ξ(s)
s2 . Suppose that s∗ ̸= 0

(the case for 0 is done by a continuity argument). Using the homogeneity in
w, let ||w|| =

√
t transforming our event into

⟨w, σ(A)⟩ > t.

We now define a sequence (bi)k
1 such that bi is the smaller integer such that

bi − 1 ≥ wi

s∗
. Since s∗ is a constant, we have that bi is comparable to wi which

implies that ||b|| is comparable to
√
t, as

||b||2 =
k∑

i=1
b2

i ≥
k∑

i=1

w2
i

s2
∗

= t

s2
∗
.

The sequence defined above was made in order to build the following
n-by-n block matrix M . We are going to use k matrices of size bi-by-bi,
1 ≤ i ≤ k, each one with all entries being equal to s∗. We fit each block, in
order, diagonally in M and put all the leftover entries as being 0. Our choice of
the bi’s guarantees that all the matrices will fit insideM as

k∑
i=1

bi ≤
√
k||b|| ≪ n,

since ||b|| ≈
√
t and t ≪ n2 from hypotheses.

By the construction of M we have that rank(M) ≤ k and σi(M) = s∗bi,
not necessarily in decreasing order. By the definition of b, we have

wi ≤ σi(M) − s∗ ≤ wi + s2
∗c

where c is the smallest natural number such that s2
∗c ≥ 1. Define T :=

k∑
i=1

(
bi

2

)
.

This is the number of non-zero upper diagonal elements of M . Since they are
all equal to s∗ we have that the distribution of ⟨A,M⟩F is equals to 2s∗

∑T
i=1 ξi,

where the ξi are the respective entries of A which weren’t multiplied by a null
entry of M . Hence, we have

P
(
⟨A,M⟩F > t

)
= P

(
T∑

i=1
ξi >

t

2s∗

)
.

In order to use Cramér’s Theorem, Theorem 2.16, we need to normalize the
left hand size of above event by T . We can do that as T = ||b||2

2 −
∑k

i=1 bi

2 and

t

2s2
∗

=
∑k

i=1 w
2
i

2s2
∗

≤ 2−1
k∑

i=1
(bi − 1)2 = T −

∑k
i=1 bi

2 + k.

Since ∑k
i=1 bi goes to infinite, we can guarantee that t

2s2
∗

≤ T for n big enough.
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Now we can change the inequality with a normalization by T and get

lnP
(
⟨A,M⟩F > t

)
= lnP

(
sgn(s∗)

T∑
i=1

ξi >
t

2|s∗|

)

≥ lnP
(
T−1sgn(s∗)

T∑
i=1

ξi > |s∗|
)

= −TΛ∗
ξ(s∗) + o(T )

= −
tΛ∗

ξ(s∗)
2s2

∗
− o(t) = −tℓ

2 − o(t).

Finally, we can apply property 2 of 3.6 and Cauchy-Schwarz inequality
to get

⟨A,M⟩F ≤
k∑

i=1
σi(A)σi(M) ≤

k∑
i=1

σi(A)(wi + s2
∗c) ≤

k∑
i=1

σi(A)wi + s2
∗c

k∑
i=1

σi(A)

≤
k∑

i=1
σi(A)wi + s2

∗c
√
k

√√√√ k∑
i=1

σ2
i (A)

and we can write

P(⟨A,M⟩F > t) ≤ P

 k∑
i=1

σi(A)wi + s2
∗c

√
k

√√√√ k∑
i=1

σ2
i (A) > t


= P

(
k∑

i=1
σi(A)wi > t− t2/3

)
+ P

s2
∗c

√
k

√√√√ k∑
i=1

σ2
i (A) > t2/3


We, now, can apply Corollary 3.14 on the second term of the left hand size of
the above equation to get P

(∑k
i=1 σ

2
i (A) > t4/3

s4
∗c2k

)
= Θ

(
exp(−t4/3)

)
. Our final

step is bounding lnP
(∑k

i=1 σi(A)wi > t− t2/3
)

from below. We will use that
ln(x− y) = ln x ln(1 − y

x
) to get

lnP
(

k∑
i=1

σi(A)wi > t− t2/3
)

≥ ln
P(⟨A,M⟩F > t

)
− P

s2
∗c

√
k

√√√√ k∑
i=1

σ2
i (A) > t2/3



= lnP
(
⟨A,M⟩F > t

)
+ ln

1 +
P
(
s2

∗c
√
k
√∑k

i=1 σ
2
i (A) > t2/3

)
P(⟨A,M⟩F > t)


≥ −tℓ

2 − o(t) + ln
(

1 − Θ
(

exp(−t4/3)
exp(−t)

))

≥ −tℓ

2 − o(t) − o(1)

= −tℓ

2 − o(t)
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and changing t − t2/3 by |w|
√
t, which is equals to t, only hurts us by a

small error factor that is absorbed by o(t).
For the eigenvalue part, remember the proof of Lemma 3.7 and write

A = A+ − A−. Write λ+
i (A) = max{0, λ(Ai)} as the eigenvalues of A+. Also

note that A is symmetric, then |λi(A)| = σi(A), and M is symmetric and
positive semi-definite, since s∗ > 0, then λi(M) = σi(M). Therefore, using
properties 2 and 3 of Theorem 3.6

⟨A,M⟩F ≤ ⟨A+,M⟩F ≤
k∑

i=1
λ+

i (A)λi(M) ≤
k∑

i=1
λ+

i (A)(wi + s2
∗c)

≤
k∑

i=1
λ+(A)wi + s2

∗c
k∑

i=1
λ+(A)

≤
k∑

i=1
λ+(A)wi + s2

∗c
√
k

√√√√ k∑
i=1

λ+
i (A)2

the rest of the proof is the same as in the singular value case. ■

Now we can finish the general subgaussian LDP.

3.5
Proof of general LDP and the LDP for G(n,m)

Using the results from the last section, we are now able to prove the
general LDP Theorem 3.4. As this theorem does not includes the G(n,m)
case, we will need another LDP result for it. Fortunately, the same bound
holds.
Proof.[of Theorem 3.4] We start with the upper bound side, E being a closed
set, and use Corollary 3.14 to get

lnP
(
X ∈ E

)
≤ lnP


√√√√ k∑

i=1
σ2

i > mnt


≤ −m2

nt
2ℓ

2 +O

(
nk ln t

2m2
nℓ

nk

)

= −m2
nt

2ℓ

2 +O

(
n ln m

2
n

n

)

= −m2
nt

2ℓ

2 + o(m2
n).

where the first inequality came from our first discussion 3-1 about this theorem,
and we have used that k

t2ℓ
is smaller than any function that goes to infinite,

since k
t2ℓ

≤ m2
n

2n
and

√
n ≪ mn ≪ n. It only lasts to prove the lower bound

part, E being an open set.
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Remember that we have shown that, if w ∈ E, then

lnP
(
X ∈ E

)
≥ lnP

(
||X||2 ≤ ||w||2 + ε and ⟨X,w⟩ ≥ ||w||2

)
and that we need to bound the probability of each event separately. For the
first one we can use, again, Corollary 3.14 to get

lnP
(
||X||2 > ||w||2 + ε

)
= lnP

(
k∑

i=1
σ2

i > m2
n(||w||2 + ε)

)

≤ −m2
n(||w||2 + ε)ℓ

2 +O

(
nk ln m

4
n(||w||2 + ε)2ℓ

nk

)

= −m2
n(||w||2 + ε)ℓ

2 +O

(
n ln m

4
n

n2

)

= −m2
n(||w||2 + ε)ℓ

2 + o
(
m2

n

)
,

(3-2)

where we use that k
(||w||2+ε)2ℓ

≤ m4
n

n
and since

√
n ≪ mn ≪ n and mn is equals

to
√
nf(n), where

√
n ≫ f(n) ≫ 1.

For the second event, we will use Proposition 3.15 to get

lnP
(
⟨X,w⟩ ≥ ||w||2

)
= lnP

(
k∑

i=1
σiwi ≥

(
mn||w||

)
||w||

)

≥ −m2
n||w||2ℓ

2 − o(m2
n)

where we only needed to set t = mn||w||.
With those results, we see that the event ⟨X,w⟩ ≥ ||w||2 has a bigger

probability than the event ||X||2 > ||w||2 + ε. Therefore, the event ⟨X,w⟩ ≥
||w||2 dominates the probability and we have

lnP
(
X ∈ E

)
≥ lnP

(
||X||2 ≤ ||w||2 + ε and ⟨X,w⟩ ≥ ||w||2

)
≥ −m2

n||w||2ℓ
2 − o(m2

n)

as we wanted and this finish the proof for the Singular Values.
For the second part, the vector Y = (λ1, . . . , λk)/mn, observe that we

have the extra hypotheses that the s that achieves ℓ is non-negative. Therefore,
we can use the second part of Proposition 3.15 on equation 3-2, changing X by
Y . The rest of the proof is the same and the result for Eigenvalues is established
as well.

■

This theorem works perfectly for the centralized matrix of G(n, p),
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however we are dealing with G(n,m) instead and need to ensure that it has
exactly m positive upper diagonal entries. What we are going to do is to show
that the same bounds proved above holds for the G(n,m) as well and compute
the value of ℓ for a complete result.

Before starting, we make a quick remark. Since we will work with triangle
count with the most negative eigenvalues, we need to switch the order of them
because our result uses only the first k of them. For that, we change p by
q = 1 − p and work with the complement of G(n, p) and G(n,m), which are
the same in distribution as G(n, q) and G(n, q

(
n
2

)
), respectively. It will switch

the order because its the same thing as working with E[An] − An instead of
An − E[An].

The first thing that we have to find for the LDP is the value of ℓ. After
that we can state and prove it.

Lemma 3.16 Let ξ be a random variable such that ξ = −q with probability
1 − q and ξ = 1 − q with probability q. The

ℓ = inf
s

Λ∗
ξ(s)
s2 =

ln 1−q
q

1 − 2q

achieving its minimum at s = 1 − 2q.

Proof. We know that

Λ∗
ξ(s) = (q + s) ln q + s

q
+ (1 − q − s) ln 1 − q − s

1 − q

and we can change parameters r = s+ q so that we have to minimize

M(r) =
Λ∗

ξ(r − q)
(r − q)2

where M(q) is defined by continuity.
Now we compute some derivatives:

M ′(r) = −
(q + r) ln r

q
+ (2 − q − r) ln 1−r

1−q

(r − q)3

and we define N(r) to be its numerator. We, then, search for the roots of N(r)
in order to find the roots of M ′(r) and its minimums.

N ′(r) = ln r
q

− ln 1 − r

1 − q
+ q

r
− 1 − q

q − r
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and
N ′′(r) = (r − q)

(
1
r2 − 1

(1 − r)2

)
.

Therefore, the second derivative N ′′(r) has two roots, being 1/2 and q. This
implies that N(r) has at most 4 roots.

We can observe that N(r) vanishes at q and 1 − q and that N ′(r) and
N ′′(r) vanishes at q as well. So N(r) has a triple root at q and a single root at
1 − q. These are all the roots.

As M ′(q) ̸= 0 by definition, we have that the only root of M ′(r) is 1 − q.
Since the function is defined on [0, 1] we have the possibility that the minimum
is achieved by either of these values: 0, 1 − q and 1.

We, finally, only need to show that

M ′(1 − q) =
ln 1−q

2
1 − 2q

is the minimum value. Since the other two values are

1
q2 ln 1

1 − q
and 1

(1 − q)2 ln 1
q

and q and 1−q are symmetric in [0, 1], we only need to prove that one of them
is bigger then our desired value for all q.

Define

f(q) := q2(1 − 2q)
(

ln 1−q
2

1 − 2q − 1
q2 ln 1

1 − q

)
= (1 − q)2 ln(1 − q) − q2 ln q.

Since f(q) = −f(1−q), we only need to prove that f(q) < 0 when 0 < q < 1/2.
This is true because f(0) = f(1/2) = 0 and f ′′(q) = −2 ln q + 2 ln(1 − q) > 0.

■

Finally, the LDP. We will quickly revisit our notation. Here we will prove
a LDP for the vectors (σ1, σ2, . . . , σk)/mn and (λ1, λ2, . . . , λk)/mn, where k is
a constant and

√
n ≪ mn ≪ n. So, now, we are proving a LDP for a constant

number of Singular Values and Eigenvalues of G(n,m)’s centralized adjacency
matrix.

Theorem 3.17 (LDP for G(n,m)) Let An be a the centered adjacency ma-
trix of G(n,m) and fix q ∈ (0, 1) such that |m−q

(
n
2

)
| = O(1). For every integer

k ≥ 1 and sequence mn such that
√
n ≪ mn ≪ n, we have that the sequence

of vectors
X = (σ1, σ2, . . . , σk)/mn
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satisfies the LDP with speed m2
n and good rate function I : Rk

+ → [0,∞) with

I(x) =


|x|2

2
ln 1−q

q

1−2q
, if q ̸= 1

2

|x|2, if q = 1
2 .

If, in addition, q ≤ 1
2 , then the sequence

Y = (λ1, λ2, . . . , λk)/mn

has the same LDP properties.

Proof. Let Aq be the centered adjacency matrix of G(n, q).
For the lower bound side, observe that since |m − q

(
n
2

)
| = O(1) we can

say that for a given event F , P(An ∈ F ) = P(Aq ∈ F |M), where M is the
event that G(n, q) has exactly m edges. This gives us that

P
(
An ∈ F

)
= P

(
Aq ∈ F |M

)
= P(Aq ∈ F and M)

P(M) ≤ P(Aq ∈ F )
P(M)

and calculating P(M) using Stirling’s Approximation

P(M) =
(
N

m

)
pm(1 − p)N−m

≈

√
2πN

(
N
e

)N

√
2π(N −m)

(
N−m

e

)N−m √
2πm

(
m
e

)m q
m(1 − q)N−m

≈

√
2πN

(
N
e

)N

√
2π(1 − q)N

(
(1−q)N

e

)(1−q)N √
2πqN

(
qN
e

)qN
qqN(1 − q)(1−q)N

= 1√
2πq(1 − q)N

≈ 1
n
.

and then

lnP
(
An ∈ F

)
≤ lnP

(
Aq ∈ F

)
−O(lnn)

and the bound of the LDP holds. It only remains to show the upper bound
side.

For this side we used Proposition 3.15 and it was done using the
distribution of ⟨Aq,M⟩, where Aq is the adjacency matrix of G(n, q), which is
equal to 2s∗

∑T
i=1 ξi. The point is: this is the binomial distribution, with some

rescaling and translation, with T trials. For the adjacency matrix of G(n,m), it
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would be a hypergeometric distribution, with some rescaling and translation,
with m trials and T possible successes. Moreover, we know that, by our
construction, the size of the blocks implies that T = o(n2). Let HN,T,m denote
the hypergeometric random variable with population size N , T trials and m

possible successes; and Bq,T be the binomial distribution with probability q

and T trials. Using one more extensive Stirling’s Approximation calculation

∣∣∣lnP(HN,T,m = s) − lnP(Bm/N,T = s)
∣∣∣ = O

(
T 2

N

)

and in Proposition 3.15 we have that this T 2

N
= O

(
t2

n2

)
= o(t), since t ≪ n2.

Therefore the error term is sufficiently small and we have

lnP
(
⟨An,M⟩ > t

)
≥ lnP

(
⟨Aq,M⟩ > t

)
− o(t).

Therefore the LDP works for G(n,m) as well.
Finally, the constant comes from the LDP for G(n, q) and is ln 1−q

q

1−2q

provided by Lemma 3.16. ■

3.6
A Very Long Proof of Theorem 3.1

We can finally start to prove the principal theorem of this chapter! Note
that all the theorems, propositions, lemmas and corollaries that led to the
LDP’s theorems for only a constant number of extreme eigenvalues. Therefore,
we need to show that the other part, which we will call “the bulk”, of them are
non-important for the triangle count. The bulk is going to be the eigenvalues
that are greater than −Ω(

√
Kn) for some big K. After controlling them, we

need to show that there is only a constant number of eigenvalues that influence
the triangle count, and that they are the eigenvalues lesser than −Ω(

√
Kn).

We will do it transforming Corollary 3.14 into a bound on the eigenvalues’
values instead of a constant number of them.

3.6.1
Preliminaries

Here we denote f(A) with f a function and A a matrix as f(A) :=
Uf(D)V T where UDV T is the eigendecomposition of A and f(D) is f applied
on each diagonal entry.

For our next result, we will need the following theorem, which we won’t
prove but we give a reference for it after its number. It essentially says that
the trace of f(n−1/2An), where f is Lipschitz, is concentrated.
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Theorem 3.18 ([12]) Let ||ξ||∞ < ∞, let f : R → R be a K-Lipschitz,
convex function and let An an n-by-n random symmetric matrix with iid upper
diagonal entries with distribution ξ and diagonal entries equal to zero.

If Xn = n−1∑n
i=1 f(n−1/2λi(An)), then there exists a universal constant

C such that

P
(
|Xn − E[Xn]| ≥ δ

)
≤ C exp

(
− n2δ2

C||ξ||∞K2

)

if δ ≫ Kn−1.

With this result we can compute the contribution of the bulk of the
eigenvalues.

Lemma 3.19 Let An be the centered adjacency matrix of G(n,m). Then, if
K is sufficiently large and s ≫ 3Kn−1,

P

 ∑
λi(An)≥−

√
Kn

λ3
i (An) < −s−O(n2)

 ≤ exp
(

− s2

n3K2

)
.

Proof. Again, it will be more convenient to work inG(n, p) rather thanG(n,m).
Fortunately, the argument given in the proof of Theorem 3.17 again allows the
G(n, p) result to transfer to the G(n,m) setting. Therefore, we work with An

being the centered adjacency matrix of a random graph distributed as G(n, p).
In order to use Theorem 3.18, we need to define a convex, Lipschitz

function that is convenient for our application. We wish to consider the cubes
of the eigenvalues. However, as the function x → x3 is not Lipschitz we cannot
apply Theorem 3.18 directly with this function. Instead we define two convex,
Lipschitz functions f1 and −f2 such that (f1 + f2)(x) = x3 in a large interval
[−

√
K,

√
K]. Set:

f1(x) =


0 if x ≤ 0
x3 if 0 < x ≤

√
K

3Kx− 2K3/2 if
√
K < x.

The third part was defined to maintain the convexity and the Lipschitz
condition as it is just the line which is tangent to x3 on point

√
K.

Defining f2(x) = −f1(−x), we have that f2(x) is concave, but −f2(x) is
convex. We can still use Theorem 3.18 on the difference of two convex functions,
since we can apply it to each of the functions separately and then apply an
union bound, increasing the value of C. Therefore we can use the function
f1 + f2.

DBD
PUC-Rio - Certificação Digital Nº 2012234/CA



Chapter 3. The Spectral Approach 45

Note that

(f1 + f2)(x) ≤

 0 if x ≤ −
√
K

x3 if −
√
K ≤ x

and then we get a bound on the sum
n∑

i=1
(f1 + f2)(n−1/2λi(An)) ≤ n−3/2 ∑

λi(An)≥−
√

Kn

λ3
i (An). (3-3)

Now, we use Theorem 3.18 with f1 + f2 and s ≫ 3Kn−1 to get

P
(
n−1

n∑
i=1

(f1 + f2)(n−1/2λi(An)) ≤ n−1E
[

n∑
i=1

(f1 + f2)(n−1/2λi(An))
]

− s

)

≤ exp
(

−Ω
(
n2s2

K2

))
.

But if we use 3-3, we get

P

 ∑
λi(An)≥−

√
Kn

λ3
i (An) ≤ n3/2E

[
n∑

i=1
(f1 + f2)(n−1/2λi(An))

]
− s

 ≤

P
(
n3/2

n∑
i=1

(f1 + f2)(n−1/2λi(An)) ≤ n3/2E
[

n∑
i=1

(f1 + f2)(n−1/2λi(An))
]

− s

)
=

P
(
n−1

n∑
i=1

(f1 + f2)(n−1/2λi(An)) ≤ n−1E
[

n∑
i=1

(f1 + f2)(n−1/2λi(An))
]

− sn−5/2
)

≤

exp
(

−Ω
(

s2

n3K2

))
.

Summarizing,

P

 ∑
λi(An)≥−

√
Kn

λ3
i (An) ≤ n3/2E

[
n∑

i=1
(f1 + f2)(n−1/2λi(An))

]
− s

 ≤ exp
(

−Ω
(

s2

n3K2

))
.

It only remains to control n3/2E[∑n
i=1(f1 + f2)(n−1/2λi(An))]. If we show

that E[∑n
i=1(f1 + f2)(n−1/2λi(An))] = O(

√
n), then we are done.

Another useful inequality that we obtain from the definition of f1 + f2 is

|(f1 + f2)(x) − x3| ≤

 0 if |x| ≤
√
K

x3 if
√
K ≤ |x|
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Hence,∣∣∣∣∣
n∑

i=1
(f1 + f2)(n−1/2λi(An)) − n−3/2

n∑
i=1

λ3
i (An)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

(f1 + f2)(n−1/2λi(An)) − n−3/2λ3
i (An)

∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

|λi|>
√

nK

(f1 + f2)(n−1/2λi(An)) − n−3/2λ3
i (An)

∣∣∣∣∣∣∣
≤

∑
|λi|>

√
nK

∣∣∣(f1 + f2)(n−1/2λi(An)) − n−3/2λ3
i (An)

∣∣∣
≤

∑
|λi|>

√
nK

∣∣∣n−3/2λ3
i (An)

∣∣∣
≤ n−1/2σ3

1(An)Iσ1(An)≥
√

Kn

where we used that all λi(An) may be bigger than
√
Kn and that σ1(An) ≥

|λi(An)| for all i.
We now take expectations and bound from above

E
[
σ3

1(An)Iσ1(An)≥
√

Kn

]
≤ n3P

(
σ1(An) ≥

√
Kn

)
.

Using Corollary 3.14 with k = 1 and t = K
√
n, if K is sufficiently large,

then we get the bound

E
[
σ3

1(An)Iσ1(An)≥
√

Kn

]
≤ n3P

(
σ1(An) ≥

√
Kn

)
≤ exp(−Ω(n)).

Therefore, we finally get

P

 ∑
λi(An)≥−

√
Kn

λ3
i (An) < E

[
tr[A3

n]
]

− s+ exp(−Ω(n))

 ≤ exp
(

s2

n3K2

)

which is what we wanted since E
[
tr[A3

n]
]

= O(n2). ■

Now we need to we take care of the quantity of singular values above a
certain bound transforming Corollary 3.14 into

Corollary 3.20 Using the notation of 3.14, then

lnP

√√√√ ∑
σi(A)>

√
Kn

σ2
i (A) ≥ t

 ≤ −t2ℓ

2 +O

(
t2

K
lnK

)
.

The result still holds for An being the adjacency matrix of G(n,m).

Proof. The proof is the following: If we suppose that each of the first k =
⌈

t2

Kn

⌉
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singular values are bigger than
√
Kn, then

k∑
i=1

σ2
i (A) ≥ k

√
Kn ≥ t2,

Therefore, we have two possibilities:

– either ∑
σi(A)>

√
Kn

σ2
i (A) ≤ ∑k

i=1 σ
2
i (A), i.e. there are less than k singular

values bigger than
√
Kn;

– or ∑k
i=1 σ

2
i (A) ≥ t2.

Hence, we get that

lnP

√√√√ ∑
σi(A)>

√
Kn

σ2
i (A) ≥ t

 ≤ lnP


√√√√ k∑

i=1
σ2

i (A) ≥ t

 ≤ −t2ℓ

2 +O
(
t2

K
lnK

)

by Corollary 3.14.
Finally, using again that if we condition G(n, q) on having q

(
n
2

)
edges,

then we only lose a small summand of ln(n), we get our result. ■

We are ready to start the proof now.

3.6.2
The Proof

In order to prove Theorem 3.1, we will need to prove an upper bound
on the desired probability and a matching lower bound. Then we will need to
handle the last statement showing that the most negative eigenvalue is, indeed,
much more negative than all the others.

3.6.2.1
The Upper Bound

Remember that Corollary 3.3 gave us a upper bound on the probability
of a certain triangle count deviation using the corresponding bound for the
trace of the cube of centered adjacency matrix.

Let An be the adjacency matrix of G(n,m) and Ãn be the centered one.
We use Corollary 3.3 and that τ(G) = tr[A3

n]
(n

3)
= tr[A3

n]
n3 +O(1/n) to get

P
(
τ(G) ≤ p3−t

)
= P

(
tr[A3

n] ≤ n3p3−tn3+O(n2)
)

≤ P
(
tr[Ã3

n] ≤ −tn3+O(n2)
)
.

In order to find this probability, we need to bound the sum of the cubes
of the centered adjacency matrix’s eigenvalues, since tr[Ã3

n] = ∑n
i=1 λ

3
i (Ãn).
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Let’s start with the extremal eigenvalues (letting ε → 0 and K → ∞ with
orders chosen afterwards):

P

 ∑
λi(Ãn)<−

√
Kn

λ3
i (Ãn) < −(1 − ε)tn3

 ≤ P

√√√√ ∑
σi(Ãn)>

√
Kn

σ2
i (Ãn) > (1 − ε)1/3t1/3n


≤ exp

(
− ℓ

2t
2/3n2 + o(t2/3n2)

)

where we used Corollary 3.20 in the last inequality. The first inequality came
from Jensen’s Inequality on

∣∣∣∣∣∣∣
∑

λi(Ãn)<−
√

Kn

λ3
i (Ãn)

∣∣∣∣∣∣∣ ≤

 ∑
λi(Ãn)<−

√
Kn

λ2
i (Ãn)


3/2

≤

√√√√ ∑
σi(Ãn)>

√
Kn

σ2
i (Ãn)


3

.

Now we control the bulk with Lemma 3.19:

P

 ∑
λi(Ãn)≥−

√
Kn

λ3
i (Ãn) < −εtn3

 ≤ exp
(

−Ω
(
ε2t2n3

K2

))
= exp

(
−ω(t2/3n2)

)

setting ε
K

= ω(n−1/2t−2/3). This choice is made so that the probability of the
bulk doesn’t affect our result significantly.

Combining both results yields

lnP
(
tr[Ã3

n] ≤ −tn3
)

≤ −ℓt2/3n2

2 (1 + o(1))

and therefore
lnP

(
τ(G) ≤ p3 − t

)
≤ −ℓt2/3n2

2 (1 + o(1))

proving the upper bound.

3.6.2.2
The Lower Bound

For the lower bound we will work with minus the centered adjacency
matrix E[An] − A where q = 1 − p.

We don’t have a result like Corollary 3.3 for the lower bound, so our
approach is going to be different. We are going to use the following idea: let A
and B be events of the probability space. Then P(A|B) = P(A∩B)

P(B) . Letting A
be the event that G(n,m) has few triangles and B some specific event, then if
P(A|B) is non-negligible compared to P(B), we can use that
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P(A|B) = P(A ∩B)
P(B) ⇒ P(B)P(A|B) = P(A ∩B) ≤ P(A) (3-4)

and a lower bound on P(B) will give a lower bound to P(A) up to a small order
factor.

Our event B is going to be about the behavior of Ãn over some blocks
of itself. Translating to graph language, this event is about an specific non-
balanced bipartition where the smaller part has a lower edge density. With
some smart choosing of the parameters for each block, we will get the desired
bound and the conditional result. Let’s start:

For clarity, remember that ℓ = inf
s

Λ∗
ξ(s)
s2 , that s∗ = 1 − 2q ≥ 0 is the

minimizing s from ℓ and let ξ1, . . . , ξ(n
2) be some ordering of the upper diagonal

entries of Ãn. We start by choosing the r-by-r block B1 which is the top-left
corner of Ãn. Let I1 be the set of indices of the ξi that are in B1. We complete
the covering of Ãn with the r-by-(n− r) block B2, that is on B1’s right, with
I2 analogously defined and B3 being the (n− r)-by-(n− r) block below B2.

We want to get the parameters so that B1 has a higher concentration of
edges (non-edges of G(n,m)) compared to B2. For such, let r = z1/3n with
r = nt1/3

s∗
(the closest integer, actually) and we want∑

i∈I1

ξi = B1
∗ (3-5)

∑
i∈I2

ξi = B2
∗ (3-6)

where B1
∗ =

⌊
s∗
(

r
2

)⌋
and B2

∗ =
⌈
s∗z1/3r(n− r)

⌉
. Now we are ready to go, since

B1
∗ ≈ n2t2/3

2s∗

and
B2

∗ ≈ n2t2/3

s∗
.

Lemma 3.21 Let B be the event in which 3-5 and 3-6 happen. Then

lnP(B) ≥ −n2t2/3ℓ

2 (1 + o(1)).

Proof. We are going to use the 3-4 idea. Let Bα be the event such that 3-5
holds and Bβ the event where 3-6 holds. Since the ξi’s are centralized Bernoulli
trials, we can use the hypergeometric distribution on ξi + q. For Bα we have
a population of

(
n
2

)
, m possible successes,

(
r
2

)
trials and B1

∗ + q
(

r
2

)
successes,

since ∑
i∈I1

(ξi + q) = q
(

r
2

)
+ ∑

i∈I1
ξi.
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Let H be a hypergeometric random variable with t trials, T population
size and δT possible successes, where δ ∈ (0, 1). Using a very long Stirling
approximation, for a integer h

1
t

lnP(H = h) = −D
(
h

t
, δ

)
−

1 − t
T

t
T

D

(
q − h

T

1 − t
T

, δ

)
+O

(
lnT
t

)

where D(q + s, q) = Λ∗
ξi

(s) is the Legendre Transformation of centralized
Bernoulli’s cumulant-generating function (which is the rate function we’ve
found in the basics).

Translating this result to Bα, we have t =
(

r
2

)
, T =

(
n
2

)
, δ = q,

h = (s∗ + q)
(

r
2

)
and H = ∑

i∈I1
ξi + q. Therefore,

1(
r
2

) lnP

∑
i∈I1

ξi = s∗

(
r

2

) = −D (s∗ + q, q) −
1 −

(
r
2

)
/
(

n
2

)
(

r
2

)
/
(

n
2

) D

q − (s∗ + q)
(

r
2

)
/
(

n
2

)
1 −

(
r
2

)
/
(

n
2

) , q


+O

 ln
(

n
2

)
(

r
2

)


→ −D (s∗ + q, q) = −ℓs2
∗

when n → ∞, since lnn ≪ r ≪ n from choice, D(q, q) = 0 and s∗ being the
minimizing value of Λ∗

ξ(s)
s2 .

Finally,

lnP

∑
i∈I1

ξi = s∗

(
r

2

) = −(1 + o(1))ℓs2
∗

(
r

2

)

= −(1 + o(1))t
2/3n2ℓ

2 .

Proceeding with our strategy, let’s compute P(Bβ|Bα). Conditioned on
Bα, Bβ is, if added to q, a hypergeometric distribution with parameters:
r(n − r) ≈ nr = n2z1/3 trials,

(
n
2

)
−
(

r
2

)
≈ n2 population size and m − S∗ ≈(

n
2

) (
q − t2/3

2s∗

)
possible successes. We use the same Stirling formula from above,

which won’t fit on the page, and get that

1
r(n− r) lnP

∑
i∈I2

ξi = B2
∗

∣∣∣Bα

 = −Θ(z2/3) − o(z2/3)

lnP

∑
i∈I2

ξi = B2
∗

∣∣∣Bα

 = −o(n2z2/3) = −o(n2t2/3)

since nt1/3

s∗
= r = z1/3n.
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Finally,
P(Bβ|Bα) = P(B)

P(Bα)

P(B) = P(Bβ|Bα)P(Bα) = exp
(

−ℓt2/3n2

2 − o(t2/3n2)
)

as wanted. ■

The next and final step to prove the lower bound is to show that,
conditioned on Ω (we change B by Ω from here onward since we are going
to use B for a block matrix), G(n,m) has fewer triangles. Let’s try to describe
the distribution of G(n,m) given Ω. We have tree distributions to do (now
over G(n,m), not its complement):

– Block B1 receives uniformly over its entries (p − s∗)
(

r
2

)
upper diagonal

positive entries;
– Block B2 receives uniformly over its entries (p+ z1/3

1−z1/3 s∗)r(n− r) +O(1)
positive entries;

– Block B3 receives uniformly over its entries

p

(
n

2

)
− (p− s∗)

(
r

2

)
−
(
p+ z1/3

1 − z1/3 s∗

)
r(n− r) +O(1)

≈ p
n2

2 − p
r2

2 + s∗
r2

2 − prn− z1/3

1 − z1/3 s∗rn+ z1/3

1 − z1/3 s∗r
2 + pr2 +O(1)

= p

2
(
n2 + −2rn+ r2

)
+ s∗

(
z1/3

1 − z1/3 r
2 + r2

2 − z1/3

1 − z1/3 rn

)
+O(1)

≈ p

(
n− r

2

)
+ s∗

(
z1/3

1 − z1/3 r
2 − r2

2 − z1/3

1 − z1/3 rn

)
+O(1)

≈
(
p− s∗

z2/3

(1 − z1/3)2

)(
n− r

2

)
+O(1)

upper diagonal positive entries (the last part was made comparing
− z1/3

1−z1/3 rn to n2 and getting a ratio of ≈ − z2/3

1−z1/3 , since r = z1/3n).

The error terms are there only so that every term is an integer and compen-
sation for the 1 − z1/3 normalization. We are not using s∗, actually, but some
constant very close to it such that (p− s∗)

(
r
2

)
is an integer.

Lemma 3.22 Conditioned on Ω, we have that

E[τ(G)] = p3 − s3
∗z + o(z)

and
V ar(τ(G)) = O(n−2).

DBD
PUC-Rio - Certificação Digital Nº 2012234/CA



Chapter 3. The Spectral Approach 52

Proof. To compute the number of triangles, we need to know the eigenvalues of
An. We build a block matrix B with four blocks: an r-by-r block with entries
p − s∗ for the top left, an n − r-by-r and an r-by-n − r block with entries
p+ z1/3

1−z1/3 s∗ +O(n−2z−1/3) for the sides of the first block, and a n− r-by-n− r

block with entries p− z2/3

1−z2/3 s∗ +O(n−2) for the last part of B. Note that B has
rank 2 and, therefore, has only two non-zero eigenvalues. This matrix agrees
with E[An] in every entry that is not in the diagonal.

Now we approximate B by the matrix 1p− s∗vv
T , where v is the vector

that is equal to 1 on the first r entries and − z1/3

1−z1/3 on the rest. These matrix
are close to each other as seem using the Frobenius Norm

||B − (1p− s∗vv
T )||F =

√
0 + 2O(n−2z−1) +O(n−2) = o(1).

Now, since the vectors 1̄ (all-ones vector) and v are orthogonal (vT 1̄ = 1̄T
v =

0) and the matrix 1 is equal to 1̄1̄T , then the matrix 1p−s∗vv
T has eigenvalues

pn and −s∗||v||2 since

(1̄1̄T
p− vvT s∗)1̄ = 1̄1̄T 1̄p− s∗vv

T 1̄ = pn1̄

and
(1̄1̄T

p− s∗vv
T )v = −s∗vv

Tv = −s∗⟨v, v⟩v.

Since these matrix are close to each other, Weyl’s eigenvalue inequality
gives us that the eigenvalues of B are pn + o(1) and −s||v||2 + o(1). Finally,
we find that tr[B3] = p3n3 − s3

∗||v||3 = p3n3 − s3
∗n

3z +O(n3z2).
Now we find the eigenvalues of E[An]. Since B and E[An] disagree only

over the entries of the diagonal and only by at most a constant amount, we
have that

||B − E[An]||op = O(1)

where || · ||op denotes the operator norm. Therefore, again by Weyl’s eigenvalue
inequality, the eigenvalues of E[An] are pn+O(1), −s∗||v||2+O(1) and the other
eigenvalues are bounded by those values. Hence, tr[E[An]3] = p3n3 − s∗||v||3 =
p3n3 − s3

∗n
3z +O(n3z2).

Now we need to compare tr[E[An]3] and E[τ(G)].
Let’s expand tr[E[An]3] in terms of closed walks of length 3 (triangles)

as in Theorem 2.7. Let Γ3 be the set of closed walks of length 3 in Kn. Then

tr
(
E[An]3

)
=

∑
(vi,vi+1,vi+2)∈Γ3

3∏
j=1

(
E[An]

)
vj ,vj+1

.
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For E[τ(G)] its simpler. We already have that
(
n

3

)
E[τ(G)] =

∑
(vi,vi+1,vi+2)

P
(
{vi, vi+1}, {vi+1, vi+2}, {vi+2, vi} ∈ E(G)

)
.

Now we only need to show that
(

n
3

)
E[τ(G)] ≤ tr(E[An]3). We have

that P({vi, vi+1} ∈ E(G)) = (E[An])vj ,vj+1 for any i, but as it is a G(n,m)
random graph, those probabilities are not independent. But conditioned on
the existence of previous edges we have that the probability of existence of an
specific edge decreases. Therefore,

P
(
{vi, vi+1} ∈ E(G)|{v1, v2}, . . . , {vi−1, vi} ∈ E(G)

)
≤
(
E[An]

)
vj ,vj+1

and we have what we wanted:(
n

3

)
E[τ(G)] ≤

∑
(vi,vi+1,vi+2)

P({vi, vi+1}, {vi+1, vi+2}, {vi+2, vi} ∈ E(G)) = tr(E[An]3)

= p3n3 − s3
∗n

3z +O(n3z2)

E[τ(G)] ≈ p3 − s3
∗z

3 + o(z)

For the variance part, we only need to note that if T (G) is the random
variable that denotes the number of triangles in G(n,m), then

T (G) =
∑

S∈([n]
3 )

IS∈G(n,m),

where S is a triangle in Kn. Then,

V ar(T (G)) =
∑

S∈([n]
3 )
V ar(IS∈G(n,m)) + 2

∑
i<j

Cov(Si, Sj) =
∑
i,j

Cov(Si, Sj)

If two triangles S1 and S2 don’t have an edge in common, then they are
negatively correlated, as we are in G(n,m). Hence,

V ar(T (G)) ≤
∑

|Si∩Sj |≥2
Cov(Si, Sj).

As there are at most
(

n
4

)
such pairs, the covariances are at most 1 and

T (G) =
(

n
3

)
τ(G), we have

V ar(T (G)) ≤ O(n4)

V ar(τ(G)) = O(n−2)
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as wanted. ■

Finally, since nt1/3

s∗
= z1/3n, then s3

∗z = t and both lemmas imply our
lower bound after using Paley-Zygmund inequality, replacing t by (1 − o(1))t.

3.6.2.3
The Most Negative Eigenvalue

Remember that for the upper bound we used the inequality∣∣∣∑λi(Ãn)<−
√

Kn λ
3
i (Ãn)

∣∣∣ ≤
(∑

λi(Ãn)<−
√

Kn λ
2
i (Ãn)

)3/2
. In order to get an equal-

ity in this inequality we need that all but one of the eigenvalues to be zero.
As we are working with asymptotics, it should be that one of the eigenvalues
is of higher order than the others.

We need the following lemma to show that the eigenvalues of Ãn satisfies
the claim of Theorem 3.1:

Lemma 3.23 ([18]) Let (ai)i∈N be a sequence of non-negative real numbers
in non-increasing order. If ε > 0 and ∑i≥2 a

3
i ≥ εa3

1, then

||a||22 ≥ (1 + ε)1/3||a||23

For our problem, we will use this lemma on the sequence of extreme
eigenvalues taking a1 = λn. We are also using the notation that ||a||kk = ∑

i |ai|k.
Now we can prove the claim for Ãn.

Corollary 3.24 In the setting of 3.1, with the condition of τ(G) ≤ p3 − t we
have

λ3
n(Ãn) < −(1 − ε)tn3 and λ3

n−1(Ãn) ≥ −εtn3

with high probability.

Proof. Set N to be the set of indices of eigenvalues smaller then −Ω(
√
n) (the

extreme negative ones). Our proof of Theorem 3.1’s upper bound says that
for any δ > 0, if τ(G) ≤ p3 − t, then ∑

i∈N λ
3
i (Ãn) ≤ −(1 − δ)tn3 with high

probability, since, essentially, only the extreme eigenvalues contribute for the
triangle deviation.

In order to use Lemma 3.23, we will use the inverse order of the
indices in N of |λi(Ãn)| so that it is non-increasing. Over the above event(∑

i∈N λ
3
i (Ãn) ≤ −(1 − δ)tn3 conditioned on τ(G) ≤ p3 − t

)
, we have that

either
λ3

n(Ãn) ≤ −(1 − δ − ε)tn3 or
∑

i∈N\{n}
λ3

i (Ãn) ≤ −εtn3.

We now compute the probability that, on this event, we have the second
possibility happening, i.e. λ3

n(Ãn) > −(1 − δ − ε)tn3 and ∑
i∈N\n λ

3
i (Ãn) ≤
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−εtn3. Hence,

||λ||22 =
∑
i∈N

λ2
i (Ãn) ≥ (1 + ε)1/3

(∑
i∈N

|λi(Ãn)|3
)2/3

≥ (1 + ε)1/3(1 − δ)2/3t2/3n3

= (1 + Ω(ε))t2/3n3

since ∑i∈N\{n} λ
3
i (Ãn) ≤ −εtn3 implies

εtn3 ≤ |
∑

i∈N\{n}
λ3

i (Ãn)| ≤
∑

i∈N\{n}
|λ3

i (Ãn)|,

and we chose δ = Ω(ε).
Now we use Corollary 3.20 and get

lnP
(
||λ||22 ≥ (1 + Ω(ε))t2/3n3

)
≤ −(1 + Ω(ε))(1 − o(1))ℓt

2/3n2

2

which is much smaller then our lower bound from Theorem 3.1. Therefore,
with high probability, in the desired condition,

λ3
n(Ãn) < −(1 − ε)tn3 and λ3

n−1(Ãn) ≥ −εtn3

proving the corollary. ■

The final thing is to show that the bounds work for An as well. Here we
use that An = Ãn + p1 − pI.

For the λn−1(An) bound we use that since p1 is a positive semidefinite
matrix, then λn−1(An) ≥ λn−1(Ãn − pI). By Weyl’s eigenvalue inequality, we
have that

λn−1(An) ≥ λn−1(Ãn − pI) ≥ λn−1(Ãn) − p = −o(tn3)

with high conditional probability.
For λn(An) we need a result about the vertex degree of the graph, which

says that the degrees of this G(n,m) don’t deviate too much from the mean.
Before that, let’s just say that since pI is positive semidefinite, then

λn(Ãn + p1) = λn(Ãn + p1 + (pI − pI)) = λn(An + pI) ≥ λn(An)

and we need to find an upper bound for λn(Ãn + p1).
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Corollary 3.25 Conditioned on τ(G) ≤ p3 − t, let (di)n
1 be the degrees of the

graph. Then, with high probability

n∑
i=1

(di − pn)2 = o(tn3)

Proof. Using that the sum of the degrees is 2m = n2p−O(n) we have

n∑
i=1

(di − pn)2 =
n∑

i=1
d2

i − 2pn
n∑

i=1
di − p2n3 =

n∑
i=1

d2
i − 2p2n3 +O(n2) − p2n3

=
n∑

i=1
d2

i − p2n3 +O(n2).

From Lemma 3.2 we get that

tr[Ã3
n] = tr[A3

n] − p3n3 + p3n+ 6mp(np− 2p+ 1) + 3p3n(n− 1) − 3p
∑

i

d2
i

= tr[A3
n] − p3n3 + p3n− 3p

(
n∑

i=1
d2

i − np
n∑

i=1
di +O(n2)

)

≤ tr[A3
n] − p3n3 − 3p

n∑
i=1

(di − pn)2 +O(n2)

since 3p∑n
i=1 d

2
i − 6p2n

∑n
i=1 di + 3p3n3 ≥ 3p∑n

i=1 d
2
i − 3pn∑n

i=1 di +O(n2).
Using that upper bound, it follows that

P(τ(G) ≤ p3 − t) ≤ P
(
tr[Ã3

n] ≤ −tn3 − 3p
n∑

i=1
(di − pn)2 +O(n2)

)
.

Since tn3 ≫ n−3/4n3 ≫ n2, we can compute the probability that∑n
i=1(di − pn)2 ≥ εtn3, conditioned on τ(G) ≤ p3 − t, getting

P
(
τ(G) ≤ p3 − t and

n∑
i=1

(di − pn)2 ≥ εtn3
)

≤ P
(
tr[Ã3

n] ≤ −tn3(1 + 3pε−O(tn−1))
)

= P
(
tr[Ã3

n] ≤ −tn3(1 + Ω(ε)
)

≤ exp
(

−ℓt2/3n

2 (1 + Ω(ε))
)

which is much smaller then P(τ(G) ≤ p3 −t) from our lower bound of Theorem
3.1.

Therefore, conditioned on τ(G) ≤ p3 −t, we have ∑n
i=1(di −pn)2 = o(tn3)

with high probability. ■

We are almost finished. Let vn be the unit eigenvector of eigenvalue
λn(Ãn) of Ãn. The above corollary says that, with the condition, we have
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with high probability that

|Ãn1̄|2 =
n∑

i=1

 n∑
j=1

ξij

2

=
n∑

i=1
(di − p(n− 1))2 = o(tn3) +O(n) = o(tn3).

Also, since vn is an unit eigenvector, we have

Ãnvn = λn(Ãn)vn

⟨Ãnvn, 1̄⟩ = λn(Ãn)⟨vn, 1̄⟩

⟨Ãn1̄, vn⟩ = λn(Ãn)⟨vn, 1̄⟩

and |λn(Ãn)||⟨vn, 1̄⟩| ≤ |Ãn1̄||vn| = o(t1/2n3/2). Also, over our condition,
Corollary 3.24 says that with high probability |λn(Ãn)| > |(1−o(1))tn3|. Hence,

|⟨vn, 1⟩| = o(t−1/2n−3/2) = o(1).

Finally,

vT
n (Ãn + p1)vn

vT
n vn

= λn(Ãn)vT
n vn + p|⟨vn, 1⟩|2

vT
n vn

= λn(Ãn) + o(1)

and Rayleigh’s criterion gives us

λn(Ãn + p1) ≤ λn(Ãn) + o(1) = −(1 − o(1))tn3

with high conditional probability.
The approach is done!
We only make a quick observation that the result is not tight for

p ∈ (0, 1/2) only by a constant factor on the exponential. The proof of this
fact can be seen in [18].

Also, one may ask why this approach can’t be used on upper tails
deviations. The problem is that upper tails probabilities are controlled by
perturbations to the largest eigenvalue, as done in Battacharya and Ganguly
[1]. However, centering the matrix vanishes λ1, so our method doesn’t help
there.
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4
Basics for the Martingale Approach

The next two sections are related to the martingale approach to subgraph
count deviations [11]. We will not include all of the results of [11]. In particular,
we focus on the triangle count, and we prove a weaker bound. We obtain the
rate associated with the deviation probability up to a constant, whereas a
(1 + o(1)) type result is proved in [11]. As we are just giving an overview we
do not prove all the results.

In this section we give an introduction to the vital tool: Martingale. It is
usually described, playfully, with a casino. You should imagine that you are a
gambler and start with X0 reals/dolars/euros... and that there is a number of
fair random games, in the sense that the expected gain in each game is zero,
that you can play. Furthermore, this remains true no matter what happened
in previous games. Let’s formalize it.

Definition 4.1 An increasing sequence of σ-algebras (Fn) is called a filtra-
tion.

Definition 4.2 A sequence of random variables (Sn) is said to be adapted to
a filtration (Fn) if Si ∈ Fi for all i.

Definition 4.3 Let (Fn) be a filtration. Let (Sn) be a sequence of random
variables. If the sequence (Sn) has the following properties

1. E[|Sn|] < ∞ for every n;

2. (Sn) is adapted to (Fn);

3. and E[Sn+1|Fn] = Sn,

then (Sn) is said to be a martingale with respect to (Fn). Its increments
are defined as Xi = Si+1 − Si, for all i ≥ 1, and note that E[Xn|Fn] = 0.

As the Erdős-Rényi random graph process can be described as an
increasing sequence of graphs, it is natural to try to use a martigale to study
numerical properties of G(n,m)’s.

Also, as we are studying deviations, it would be great to have tools to
generate bounds of these deviations. There are two very famous inequalities
that we are going to use in this overview: Hoeffding-Azuma’s Inequality and
Freedman’s Inequality. We will prove the first (only the positive part), because
we did a similar argument in the Spectral approach and it would be nice to
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know why we called it the “Hoeffding’s argument”. The second one will be only
stated.

Lemma 4.4 (Hoeffding-Azuma Inequality) Let (Sm)M
0 be a martigale of

M steps with increments (Xi)M
1 , and let ci = ||Xi||∞ for every 1 ≤ i ≤ M .

Then, for a > 0,

P(SM − S0 > a) ≤ exp
(

−a2

2∑M
i=1 c

2
i

)
.

In particular, the result is the same for the symmetric statement SM −S0 < −a.

Proof. Note that SM − S0 = ∑M
i=1 Si − Si−1 = ∑M

i=1 Xi. Let α > 0. Since α is
positive, we can multiply both sides by it and exponentiate to use Markov’s
inequality and get

P(SM − S0 > a) = P
(

M∑
i=1

Xi > a

)
= P

(
exp

(
α

M∑
i=1

Xi

)
exp (−aα) > 1

)

≤ E
[
exp

(
α

M∑
i=1

Xi

)]
exp(−αa)

= exp(−αa)
M∏

i=1
E[exp(αXi)]

≤ exp(−αa)
M∏

i=1
cosh(αci)

≤ exp(−αa)
M∏

i=1
exp

(
α2c2

i

2

)

= exp
(
α2∑M

i=1 c
2
i

2 − αa

)
≤ exp

(
−a2

2∑M
i=1 c

2
i

)

where the optimal α is a/∑M
i=1 c

2
i . ■

There are a lot of variations for the Hoeffding-Azuma’s inequality. The
one that we are going to use fit very well with the fact that the increments of
the martingale will be attached with the exposition of its corresponding edge.
For that, we need to define some ideas.

Let Gn,m be the family of all graphs of order n and size m. We may
define that two graphs of this family are adjacent if they differ by only two
edges (since they have the same number of edges, they are different in at least
two edges) and in this case we say they have edit distance 1. In this spirit,
we may say that a function f : Gn,m → R is C-Lipschitz if |f(G) − f(G′)| ≤ C

for all adjacent pairs G,G′ ∈ Gn,m.
Finally, we make this Lipschitz condition particular to each edge.
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Definition 4.5 Let ψ : E(Kn) → R be a function. We say that f : Gn,m → R
is ψ-Lipschitz if, for every adjacent pair G,G′ ∈ Gn,m, which differs only in
ei and ej we have

|f(G) − f(G′)| ≤ ψ(ei) + ψ(ej).

We are now able to understand the idea of the following corollary

Corollary 4.6 ([11]) Given ψ : E(Kn) → R+ and a ψ-Lipschitz function
f : Gn,m → R, we have

P(f(Gm) − E[f(Gm)]| ≥ a) ≤ exp
(

−a2

8||ψ||22

)
.

In particular, the result is the same for the symmetric statement f(Gm) −
E[f(Gm)] < −a.

We now state the Freedman’s inequality. The big advantage in using
it instead of Hoeffding-Azuma’s inequality happens when we have a better
control over the increments. If they are usually smaller then their maximum
possible value, then Freedman’s inequality gives us tighter bounds. Specifically,
if E[X2

i |Fi] is smaller than ||Xi||2∞.

Theorem 4.7 (Freedman’s Inequality [8]) Let (Sm)M
0 be a martigale of

M steps with increments (Xi)M
1 with respect to a filtration (Fm)M

0 , let R ∈ R
be such that maxi |Xi| ≤ R almost surely, and let

V (M) :=
m∑

i=1
E
[
|Xi|2|Fi−1

]
.

Then, for every α, β > 0, we have

P(Sm − S0 ≥ α and V (m) ≤ β for some m) ≤ exp
(

−α2

2(β +Rα)

)
.

These are the only results that we need in order to continue.
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5
An Overview of the Martingale Approach

Remark: We make here a quick remark in order to understand the
parameters used in this approach. Here we will write about the triangle count
of a random graph G(n,m) instead of the triangle density. Therefore, the
deviation term is

(
n
3

)
times bigger than the one from the previous approach.

We are going to use αn3/2 for the deviation term from now on and we
note that

tn3 ≈ αn3/2 ⇔ t ≈ αn−3/2.

Then, the result with a Spectral approach is tight for n−3/4 ≪ t ≪ 1 and
the following approach is going to be tight for n−3/2 ≪ t ≪ n−1.

Also, we denote the triangle count deviation by D△(Gm) and G(n,m) by
Gm. The main result that we are aiming to get is

Theorem 5.1 There is a non-negative constant c = c(H) such that for all
m ≤ N

2 , and all α, n ≥ c−1, we have

P
(
|D△(Gm)| > αn3/2

)
≤ exp

(
− cαmin{α, n1/2}

)
.

(For any notational misunderstanding, see the next section 5.1).
In order to reach this, we will do the following: as we are doing a

martingale approach, we need a precise martingale expression for D△(Gm).
We will then see that the deviation only depends on the deviations of the
increments of triangles, △, and paths of length two, P2. Finally, we will manage
these deviations by controlling the degrees’ behaviour of G(n,m) in order to
regulate P2 deviations, and controlling the codegrees’ behaviour in order to
regulate △ deviations.

5.0.1
About Complements

We won’t actually use the following results for our main result proof,
but we will quote it on the last section of this chapter when we discuss a
generalized version of the main result. We suggest that the reader skip this
subsection until then.

The following lemma allow us to handle H-counts using the H-count in
the complement of Gm. In order to prove it, you will need to use the inclusion-
exclusion principle.
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Lemma 5.2 Let H and G be graphs, then

NH(G) =
∑

H′⊂E(H)
(−1)e(H′)NH′(Gc) (5-1)

where H ′ is a subgraph of H.

For the corollary, you just need to use the linearity of the expectation
and subtract the result from 5-1.

Corollary 5.3 Let H and G be graphs, then

DH(G) =
∑

H′⊂E(H)
(−1)e(H′)DH′(e(Gc)).

5.1
Notation

We have to settle some notation first, and we have a lot of notation.

Notation 5.4 Let G and H be graphs.

– NH(G) is the number of isomorphic copies of H in G.

–
(

G
H

)
is the number of copies of H in G without repetition.

– LH(m) is the expected number of copies of H in G(n,m).

– DH(Gm) = NH(Gm)−LH(m) is the deviation of the H-count in G(n,m).

– The model used in this chapter is as follows: let {Gn,m : m = 0, . . . , N},
n ≥ 1 be a set of independent copies of the Erdős-Rényi random graph
process, and let (Gn,r)n≥1 be the sequence of random graphs (Gn,mn)n≥1,
where mn = ⌊rN⌋. Sometimes we will write Gm instead of Gn,r as in the
last item.

There will be a larger number of needed notation, but they will be done during
the others sections when needed.
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5.2
The Martingale Expression and Approximation

Let’s start by finding the martingale expression for DH(Gm), where H is
any fixed graph. For such, we need to define a sequence of random variables
that gives us the deviation’s increments on each edge addition.

Fixing n and letting (Gm : m = 0, . . . , N) be a realization of the Erdős-
Rényi random graph process, we define

AH(Gm) := NH(Gm) −NH(Gm−1) (5-2)

to be the number of newborn isomorphic copies of H with the m-th’s edge
addition. As we need information about the increments, we use the centralized
form

XH(Gm) := AH(Gm) − E
[
AH(Gm)|Gm−1

]
(5-3)

which gives us the deviation increment of the m-th step.
With these random variables defined, we are ready to state the martingale

for the H-count deviation.

Theorem 5.5 Let H be a graph. Then

DH(Gm) =
m∑

i=1

∑
F ⊂E(H)

(N −m)e(F )(m− i)e(H)−e(F )

(N − i)e(H)
XF (Gi) (5-4)

where the sum is over all 2e(H) subgraphs F of H.

The first thing that we need to prove is that it is a martingale. But
XH(Gi) is a martingale increment (with respect to the filtration G0, . . . , GN)
and the expression for our increment is a linear combination of these martingale
increments, and so, it is a martingale as well.

The second thing is that the equality really holds. It follows from the
following lemma and some induction.

Lemma 5.6 For the Erdős-Rényi random process (Gm : m = 0, . . . , N),

E
[
AH(Gm)|Gm−1

]
= 1
N −m+ 1

∑
f∈E(H)

(
NH\f (Gm−1

)
−NH(Gm−1)

)

=
(
LH(m) − LH(m− 1)

)
+ 1
N −m+ 1

∑
f∈E(H)

(
DH\f (Gm−1) −DH(Gm−1)

)
.

Proof. In order to prove the second equality, you need two things: you need to
note that NH(Gn) = LH(m) +DH(Gm) and

LH(m) −LH(m− 1) = 1
N −m+ 1

∑
f∈E(H)

(
LH\f (m− 1) −LH(m− 1)

)
. (5-5)
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You can see that 5-5 is true if you think that each edge has probability 1
N−m+1

of being chosen and that the addition of f to H \ f completes H.
For the first equality, we only need to prove that the equality holds for

the number of embeddings of H created if an specific edge em is the image of
f ∈ E(H), that is

AH(Gm) =
∑

f∈E(H)
AH,f (Gm).

where AH,f (Gm) is the number of embeddings created if em = f .
We now only need to prove that, for each f ∈ H,

E
[
AH,f (Gm)|Gm−1

]
=

(
NH\f (Gm−1) −NH(Gm−1)

)
N −m+ 1 .

We now do a counting argument. Let f ∈ H be fixed. A injective map
ϕ : V (H) → V (G) is an embedding of H in Gm and not in Gm−1 if, and only
if, ϕ embbeds H \ f in Gm−1, ϕ(f) isn’t an edge of Gm−1 and em = f .

The set of injective maps that satisfies the first two conditions is of size
NH\f (Gm−1) −NH(Gm−1) and the probability of the last condition happening
is 1

N−m+1 . Then the result holds.
■

Here is the proof of Theorem 5.5.
Proof. We will do an induction over the number of edges of H and on
m ∈ {0, . . . , N}. The base case is e(H) = 1 and m = 0, which is trivial.
For the general case, you use that

NH(Gm) = AH(Gm) +NH(Gm−1)

in order to use the induction hypothesis.
Then

DH(Gm) = NH(Gm) − LH(m)

= NH(Gm−1) + AH(Gm) − LH(m)

= NH(Gm−1) + AH(Gm) − LH(m) ±
(
LH(m− 1) + E[AH(Gm)|Gm−1]

)
= DH(Gm−1) +XH(Gm−) + E[AH(Gm)|Gm−1] −

(
LH(m) − LH(m− 1)

)
where we only used the definitions of the random variables, and ± here means
“add and subtract this term” (we are summing zero and rearrange terms on the
last line of the equation). Now you only need to apply the induction hypothesis
and Lemma 5.6. ■

Since we are only interested in triangles, we can compute the martingale
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expression for D△(Gm) getting

D△(Gm) =
m∑

i=1

(
3(N −m)2(m− i)

(N − i)3
XP2(Gi) + (N −m)3

(N − i)3
X△(Gi)

)

where P2 denotes the path of length two. So, in order to study the deviation of
of triangles, we need to study the step deviations of both triangles and paths
of length two.

To simplify the notation, define

X△(Gi) := 3(N −m)2(m− i)
(N − i)3

XP2(Gi) + (N −m)3

(N − i)3
X△(Gi)

and then
D△(Gm) =

m∑
i=1

X△(Gi).

5.3
Controlling the Degrees and Codegrees Deviations

As we saw on last section, we need to control X△(Gi) and XP2(Gi).
The way that we found to do it is by controlling the degree’s and codegree’s
deviations, The degrees are going to manage XP2(Gi) and the codegrees will
manage X△(Gi).

Here we control the deviation of the degrees and codegrees in one way:
the sum of squares of deviations. This proof only requires Corollary 4.6 in order
to be completed. We prove the one related to degrees and, since the proof is
analogous, we only state the one for codegrees.

5.3.1
Degrees’ Deviation

Our notation here is du(G) for the degree of a vertex u in a graph G. Note
that for Gm ∼ G(n,m), the expected value of du(Gm) is 2m

n
and, therefore, the

deviation of u’s degree in Gm is

Du(Gm) := du(Gm) − 2m
2 .

We now prove the lemma for degrees.

Lemma 5.7 There is a constant C such that for all b ≥ 30, and all m ≤ N ,
we have

P

 ∑
u∈V (Gm)

Du(Gm)2 > Cbn2

 ≤ exp(−bn).
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Proof. Let l = ⌊log2 n⌋ and define a function fσ for each string σ ∈
{0,±1,±2, . . . ,±2l}V (Gm) as

fσ(Gm) :=
∑

v∈V (Gm)
σ(v)Dv(Gm).

Let σ∗ be a string such that it is equal to zero if Dv(Gm) ≤ n1/2, and
otherwise σ∗(v)Dv(Gm) ≥ 0 and |σ(v)| is the largest power of two such that
|σ∗|n1/2 ≤ Dv(Gm). Then,

fσ∗(Gm) ≥ ||σ∗||2n1/2.

Here is the connection of this and the lemma: if ∑
u∈V (Gm)

Du(Gm)2 > Cbn2

with C ≥ 129, then

||σ∗||2 =
∑

u∈V (Gm)
σ∗(v)2 ≥

∑
u∈V (Gm)

Du(Gm)2 − n

4n ≥ 32bn.

Therefore, you only need to show that

∑
σ:||σ||≥32bn

P
(
fσ(Gm) > ||σ||2n1/2

)
≤ exp(−bn).

The first thing is to bound the probability for each individual σ using
Corollary 4.6 using the fact that fσ is ψ-Lipschitz if ψ(uv) = |σ(u)| + |σ(v)|.
Therefore, ∑

e∈E(Kn)
ψ(e)2 ≤ 2n

∑
v∈V (Gm)

σ2
v = 2n||σ||2

and Corollary 4.6 grants, using the fact that E[fσ(Gm)] = 0,

P
(
fσ(Gm) > ||σ||2n1/2

)
≤ exp

(
−||σ||2

16

)
≤ exp(−bn) exp

(
−||σ||2

32

)

since ||σ∗||2 > 32bn.
With that bound we can translate the problem into proving that

∑
σ:||σ||≥32bn

exp
(

−||σ||2

32

)
≤ 1.

Now you need to split the strings into types. We say that σ has type x =
(x−l−1, . . . , xl+1) if x0 vertices have σ(u) = 0, xi vertices have σ(u) = 2i−1

and x−i vertices have σ(u) = −2i−1 for each i. If we set Sx := {σ :
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σ has type x and ||σ||2 > 32bn}, then the new translation is

∑
σ∈Sx

exp
(

−||σ||2

32

)
≤ exp(−n)

for each x.
As a final translation, note that all strings σ with the same type have

the same ||σ||2 value, which can be written as

φ(x) :=
∑
j ̸=0

xj4|j|+1.

Therefore, Sx is empty if φ(x) ≤ 32bn. Fixing a type x such that φ(x) ≥ 32bn,
our final translation is proving that

|Sx| ≤ exp
(
φ(x)
32 − n

)
.

Finally, you only need to compute things now and the proof is done. ■

5.3.2
Codegrees’ Deviation

As above, the notation here is du,w(G) for the codegree of a pair of vertices
u and w in a graph G. Note that for Gm ∼ G(n,m), the expected value of
du,w(Gm) is (n−2)(m2)

(N)2
and, therefore, the deviation of u,w codegree in Gm is

Du,w(Gm) := du,w(Gm) − (n− 2)(m2)
(N)2

.

The proof for the codegrees lemma is very similar to the corresponding
on for degrees and will be omitted. If the reader is curious, the proof can be
read in [11] Lemma 4.6.

Lemma 5.8 (Lemma) There is a constant C such that for all b ≥ 30, and
all m ≤ N , we have

P
(∑

u,w

Du,w(Gm)2 > Cbn2
)

≤ exp(−bn).

5.4
A Short Proof of Theorem 5.1

We are already only one step from being ready to handle the main result
of this chapter. In order to prove Theorem 5.1 we need one more lemma! This

DBD
PUC-Rio - Certificação Digital Nº 2012234/CA



Chapter 5. An Overview of the Martingale Approach 68

lemma shows that we are able to control the squares of XP2(Gi) and X△(Gi)
by controlling the sum of squares of degree deviations and the sum of squares
of codegree deviations.

Lemma 5.9 There is a constant C such that for all 1 ≤ i ≤ N/2, and all
η ≥ 1 there is probability at least 1 − exp(−ηn1/2) that

E
[
XP2(Gi)2|Gi−1

]
≤ Cn1/2 max{η, n1/2}

and
E
[
X△(Gi)2|Gi−1

]
≤ Cn1/2 max{η, n1/2}

Proof. Let C ′ be twice the constant obtained by Lemmas 5.7 and 5.8. Define
the events E1 ∑

u∈V (Gm)
Du(Gm)2 > C ′n3/2 max{η, n1/2}

and E2 ∑
u,w

Du,w(Gm)2 > C ′n5/2 max{η, n1/2}.

As either one of η ≥ n1/2 and η < n1/2 can happen, we divide the event E1 for
each case and

P(E1) ≤ exp(−2n)Iη≤n1/2 + exp(−2ηn1/2)Iη>n1/2 ≤ 2 exp(−2ηn1/2)

where we used Lemma 5.7 to bound the probabilities. The same argument,
using Lemma 5.8, works for E2 and a union bound gives

P
(
E1 ∪ E2

)
≤ 4 exp(−2ηn1/2) ≤ exp(−ηn1/2).

Therefore, we only need to show that the first event of the theorem fails inside
event E1 and the second event fails inside E2.

Suppose that Ec
1 happens. Then,

∑
u∈V (Gm)

Du(Gm)2 ≤ C ′n3/2 max{η, n1/2}.

Remembering the definition of XP2(Gi) = AP2(Gi) − E
[
AP2(Gi)|Gi−1

]
, we get

that

E
[
XP2(Gi)2|Gi−1

]
= V ar

(
AP2(Gi)

∣∣∣Gi−1
)

≤ E

(8(i− 1)
n

− AP2(Gi)
)2
∣∣∣∣∣∣Gi−1

 .
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Since we know that

AP2(Gi) = 2
(
du(Gi−1) + dw(Gi−1)

)
= 8(i− 1)

n
+ 2

(
Du(Gi−1) +Dw(Gi−1)

)
,

the term inside the expectation becomes 4
(
Du(Gi−1) +Dw(Gi−1)

)2
, with u,w

being the vertices of the i-th edge. Hence,

E
[
XP2(Gi)2|Gi−1

]
≤ 1
N − i+ 1

∑
uw ̸∈E(Gi−1)

4
(
Du(Gi−1) +Dw(Gi−1)

)2

≤ 16(n− 1)
N

∑
u

Du(Gi−1)2

≤ 32C ′n1/2 max{η, n1/2}

since we are in Ec
1. It follows that Ec

1 is inside the first event and, therefore,
the first event fails in E1.

We can make the same argument using the equality

A△(Gi) = 6(n− 2)(i− 1)2

(N)2
+ 6Du,w(Gi−1)

for the second event and get

E
[
X△(Gi)2|Gi−1

]
= V ar

(
A△(Gi)|Gi−1

)
≤ E

A△(Gi) − 6(n− 2)(i− 1)2

(N)2

)2
∣∣∣∣∣∣Gi−1


= 1
N − i+ 1

∑
uw ̸∈E(Gi−1)

(
6Du,w(Gi−1)

)2

≤ 36
N − i+ 1

∑
uw

Du,w(Gi−1)2

≤ 36C ′n1/2 max{η, n1/2}

if we are in Ec
2. As before, it follows that Ec

2 is inside the second event and,
therefore, the second event fails in E1, proving the lemma. ■

Finally, the proof of our main result 5.1!.
Proof.[of Theorem 5.1] We will finally use the fact that

D△(Gn,p) :=
m∑

i=1
X△(Gi, p)

is a martingale using Freedman’s inequality on it. We, then, have to find our
parameters α′, β and R.

DBD
PUC-Rio - Certificação Digital Nº 2012234/CA



Chapter 5. An Overview of the Martingale Approach 70

Remembering that

XH(Gi) := 3(N −m)2(m− i)
(N − i)3

XP2(Gi) + (N −m)3

(N − i)3
X△(Gi)

we note that the coefficients of XP2(Gi) and X△(Gi) are at most 3. It implies
that

E
[
X△(Gi)2|Gi−1

]
≤ 18E

[
XP2(Gi)2|Gi−1

]
+ 18E

[
X△(Gi)2|Gi−1

]
where we used that (x+ y)2 ≤ 2(x2 + y2).

With Lemma 5.9 in mind, we define the event Evar(i− 1) to be where

E
[
X△(Gi)2|Gi−1

]
≥ 36C ′n1/2 max{α, n1/2}

where C ′ comes from the Lemma. By the same Lemma, we know that

P
(
Evar(i− 1)

)
≤ exp(−αn1/2).

If we sum over all i’s, we have the event Evar

m∑
i=1

E
[
X△(Gi)2|Gi−1

]
≥ 36C ′mn1/2 max{α, n1/2}

that has probability at most exp(−αn1/2/2), by a union bound. We have found
our β = 36C ′mn1/2 max{α, n1/2}.

R can be easily found to be 6n observing that both XP2(Gi) and X△(Gi)
have absolute value at most n and their coefficients are at most 3.

Finally, α′ comes from the proposition’s statement and is αn3/2.
We are now able to apply the Freedman’s inequality and get

P
(
D△(Gm) > αn1/2

)
≤ exp

(
−(α′)2

2(β +Rα′)

)

= exp
(

−α2n3

72C ′mn1/2 max{α, n1/2} + 12αn5/2

)

≤ exp
(

−cα2n3

n5/2 max{α, n1/2} + αn5/2

)

= exp
(

−cα2n1/2

max{α, n1/2} + α

)

≤ exp
(

−c′α2n1/2

max{α, n1/2}

)
= exp

(
−c′αmin{α, n1/2}

)

where we used that m ≤ N
2 . The proof is complete. ■

DBD
PUC-Rio - Certificação Digital Nº 2012234/CA



Chapter 5. An Overview of the Martingale Approach 71

5.4.1
Thightness of the Result

Our application for triangles is the following: let p ∈ (0, 1/2) be a constant
and α = α(n) such that 1 ≪ α ≪ n1/2. Then, Theorem 5.1 implies that

P
(
|D△(Gn,r)| > αn−3/2

)
≤ exp

(
− cα2

)
.

The approach of martingale is only tight for the interval where 1 ≪ α ≪
n1/2. Doing the translation backwards,the Spectral approach was tight for the
interval where n3/4 ≪ α ≪ n3/2. The middle interval n1/2 ≪ α ≪ n3/4 is still
open to be solved.

5.5
Going Further

As we were only looking for the triangle result, we didn’t explore the
entirety of [11]. Indeed, this paper extends this result for any subgraph and
any m = r

(
n
2

)
, where r = r(n) ∈ (0, 1) is not necessarily a constant and is

bounded away from 1. Furthermore, we only saw the result that obtain the rate
associated with the deviation probability up to a constant, while they manage
to prove a stronger (1 + o(1)) type result.

Our take showed that looking at X△(Gi) and XP2(Gi) was all we needed
to do in order to find the deviation of the triangle count. Surprisingly, this is
the case for any fixed subgraph H counting. Of course, in order to prove it
they need a vaster amount of ideas. Let’s take a look at some.

In order to prove our main result for any subgraph H with e edges and v
vertices, we need to see the following three approximations to our martingale
expression

DH(Gm) =
m∑

i=1

∑
F ⊂E(H)

(N −m)e(F )(m− i)e(H)−e(F )

(N − i)e(H)
XF (Gi).

The first comes from deviations of P2’s and △’s:

ΛH(Gn,r) := nv−3re−2
((

H

P2

)
− 3

(
H

△

))
DP2(Gn,r) + nv−3re−3

(
H

△

)
D△(Gn,r)

(5-6)
The second is a continuous version:

Λ∗
H(Gn,r) :=

m∑
i=1

XH(Gi, r) (5-7)
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where s := i/N and XH(Gi; p) is

XH(Gi; r) :=

nv−3pe−3
(
r

(
H

P2

)
(1 − r)2

(1 − s)2XP2(Gi) +
(
H

△

)
(1 − r)3

(1 − s)3 (X△(Gi) − 3sXP2(Gi))
)
.

And the third approximation

Λ∗∗
H (Gn,r) :=

m∑
i=1

∑
F ⊂E(H)

(1 − r)e(F )(r − s)e−e(F )

(1 − s)e
XF (Gi). (5-8)

The idea here is to show that each of these approximations are close
to DH(Gm) deterministically and one approximation is close to the last one
probabilistically (with small enough upper bounds). Given that this is true,
we “only” need to apply triangle inequality three times to get the main result.
Also, the result is done only for r ∈ (0, 1/2) and extended to r ∈ [1/2, 1) using
complementary graphs with Lemma 5.2 and Corollary 5.3.

As we said, we need to control the degrees and codegrees to manage
the results. Each approximation need a different set of controlling results of
them, so lemmas 5.7 and 5.8 aren’t enough. We also need to deal with the
maximum deviation and the sum of forth power of deviations of degrees and
codegrees. They are done using Corollary 4.6 and some probability results on
hypergeometric distributions, as degrees and codegrees have hypergeometric
distributions with some parameters.

Finally, the (1+o(1)) type result need to control the conditional variance
XH(Gi) and the conditional covariance of XH(Gi)XH′(Gi). [11] shows that
they are predictable, as they are generally close to a deterministic function
that depends only on n, s, H and H ′.

With this arsenal, one may finally prove the stronger result.
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6
Some Final Words

To wrap up this text, let’s return to the Spectral notation.
Remember that, focusing on the lower tail and p constant, the Spectral

approach is of right order for the range of n−3/4 ≪ t ≪ 1 with result

P
(
τ(G) ≤ E[τ(G)] − t

)
= exp

(
− Θ(n2t2/3)

)
and that the martingale approach is tight for n−3/2 ≪ t ≪ n−1 with result

P
(
τ(G) ≤ E[τ(G)] − t

)
= exp

(
− Θ(n3t2)

)
.

Also, since the standard deviation of the triangle count is of order n3/2,
the standard deviation of for the triangle density is of order n−3/2. Hence, if
t ≤ Θ

(
n−3/2

)
, then the central limit theorem for G(n,m) gives a bound for

that interval, as done by Janson [13].
With these three results, the remaining open case is the range of n−1 ≪

t ≪ n−3/4. Neeman et al. [18] conjectured that the Goldschimidt et at. [11]
result would extend for that interval as well. It as a natural conjecture as the
exponents n2t2/3 and n3t2 cross over at t = Θ

(
n−3/4

)
. While natural, it might

be wrong. In their newest version of the paper, Neeman et al. showed that
their bound, mutatis mutandis, holds for all odd cycles of length of 5 or higher
for n−1 ≪ t ≪ 1. So it might be the case that at n−1 there is a jump for the
lower tail bound.

That’s it! It was a really nice and engaging experience studying these
topics where I had little to no experience whatsoever. We are currently working
on the interval that remains open for the triangle count with a third approach!
It is remarkable that such a simple structure as a triangle is being this hard
to handle and with vastly different approaches. Beginning with the triangles
is a standard choice for building up new methods or results, e.g. Janson’s
Inequality [14] and Mantel’s Theorem [17], but they have been really stubborn
for our deviation study.

Thanks for reading!
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